Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Клеточный сок, жидкость, выделяемая цитоплазмой живой растительной клетки и заполняющая её вакуоли. К. с. состоит из воды и различных веществ, часто в виде коллоидного раствора. Вязкость К. с. в



Клеточный сок

Клеточный сок, жидкость, выделяемая цитоплазмой живой растительной клетки и заполняющая её вакуоли. К. с. состоит из воды и различных веществ, часто в виде коллоидного раствора. Вязкость К. с. в среднем в 2 раза больше вязкости воды. В покоящихся семенах и спорах растений происходит обезвоживание К. с., а при их прорастании — его обводнение. В молодых клетках К. с. меньше, чем в старых. Состав К. с. специфичен для семейства и даже для вида растений, зависит от условий произрастания, возраста растения и его отдельных клеток. В К. с. содержатся углеводы — глюкоза, фруктоза, сахароза (виноград, яблоня, груша, сахарная свёкла), инулин (георгина, топинамбур), пектины (цитрусовые, смородина, яблоня), а также гликозиды (гесперидин, амигдалин и др.) дубильные вещества, ряд аминокислот (например, лейцин, тирозин), алкалоиды (никотин, анабазин, кофеин и др.), органические кислоты (щавелевая, лимонная, яблочная) и неорганические кислоты. В виде включений в К. с. встречаются кристаллы щавелевокислого кальция. В некоторых морских водорослях содержатся йод и бром. Окраска К. с. определяется пигментами: синяя, фиолетовая и красная — антоцианами, жёлтая — антохлором, бурая — антофеином и т.д. К. с. обусловливает осмотичные свойства и тургор клеток и, следовательно, упругость тканей и органов растений, служит вместилищем воды и различных веществ, участвующих в обмене веществ клетки, и местом отложения конечных продуктов обмена.

 

 

Вакуоли

· Сократительные вакуоли у простейших

Рис. 1 Сократительные вакуоли у простейших

· Развитие вакуолей в растительной клетке

Рис. 2 Развитие вакуолей в растительной клетке

Вакуоли (франц. vacuole, от лат. vacuus — пустой), небольшие, большей частью шаровидные, полости в животных и растительных клетках или одноклеточных организмах. В клетках ряда многоклеточных беспозвоночных (губки, кишечнополостные, ресничные черви, некоторые моллюски), способных к внутриклеточному пищеварению, и в теле некоторых одноклеточных организмов (простейших) образуются пищеварительные В., содержащие пищеварительные ферменты. У высших животных пищеварительные В. образуются в особых клетках — фагоцитах. В др. клетках В. содержат соли, ферменты и продукты обмена веществ (жиры и т.д.). У многих одноклеточных организмов имеются также сократительные, или пульсирующие, В., периодически выбрасывающие своё содержимое во внешнюю среду (рис. 1). У простейших сократительные В. — главным образом аппарат, регулирующий осмотическое давление, а также служащий для выведения из организма продуктов распада.



В. растений наполнены бесцветным или окрашенным клеточным соком. Цитоплазма отделена от В. липоидно-белковой полупроницаемой мембраной (см. Биологические мембраны). Вещества, растворённые в клеточном соке В. растений (сахара, полисахариды, алкалоиды, дубильные вещества, пигменты, некоторые соли и др.), вызывают в силу осмоса поступление в клетки питательных веществ и воды и создают механическое напряжение клеток и тканей — тургор. В очень молодых клетках В. нет или они почти незаметны; по мере роста и старения клетки В. появляются в разных её участках, а затем, постепенно увеличиваясь, сливаются в одну большую В. — так называемый вакуом (рис. 2).

Яндекс.Словари›Большая советская энциклопедия

 

Клеточный сок — играет чрезвычайно важную роль в жизни растительных организмов. К. соком называют водянистую жидкость, включенную в виде более или менее крупных капель внутрь протоплазмы клеточек. В самых молодых растительных клеточках, напр. в клеточках точки роста корня или стебля, К. сока нет. Затем он появляется в виде отдельных капелек, "вакуолей клеточного сока", которые постепенно растут, сливаются друг с другом и дают в конце концов сплошную "соковую полость", одетую лишь тонким слоем протоплазмы, образующей род мешка или пузыря. Накопление К. сока внутри протоплазмы есть чисто физический процесс, могущий быть воспроизведенным искусственно. Состав К. сока в различных случаях очень различен. По большей части реакция его оказывается кислой; это зависит от присутствии свободных органических кислот, каковы щавелевая, виннокаменная, яблочная, лимонная и проч. Кроме кислот в состав К. сока входят в большинстве случаев углеводы. Из них чаще всего встречаются глюкозы, далее, тростниковый сахар, а в некоторых случаях инулин и другие более редкие углеводы. К сахарам примыкают различные глюкозиды, дубильные вещества, эпидермины и проч. Далее следуют алкалоиды, а также аспарагин, глютамин, тирозин, лейцин; изредка в растворе в К. соке находятся белковые вещества; всегда встречаются различные минеральные соли. К. сок часто бывает окрашен в красный, синий или фиолетовый, а также в желтый цвет. Желтая окраска зависит от антохлора (см.); остальные оттенки обусловлены присутствием способного изменять свой цвет антоциана (см.). Значение К. сока в жизни растительных организмов многообразно. Прежде всего он является вместилищем питательных веществ как органических, так и неорганических; в К. соке, далее, растворены многие продукты отброса, растворены и различные защитные вещества, которыми растение защищается от животных. Наиболее важную роль играют, однако, осмотические свойства К. сока. Благодаря им растение всасывает воду из окружающей среды. Значительное осмотическое давление, наблюдающееся внутри клеток (от 3 до 20 атмосфер) утилизируется растением, как механическая сила. Придавая клеточкам напряженное состояние (тургор), К. сок обусловливает прочность и упругость растительных тканей. К. же сок своим давлением растягивает оболочки клеточек, делая возможным рост их. Обыкновенно клеточки благодаря такому растягиванию раздуваются до сравнительно громадных размеров, во много раз превышающих исходную величину зародышевых клеточек. Увеличение объема, а следовательно, и рост происходит таким образом почти исключительно на счет воды, и драгоценный строительный материал — протоплазма — тратится в сравнительно ничтожном количестве. Проявление большинства этих свойств К. сока связано с присутствием прочной клеточной оболочки. К. сок и оболочка представляют собой в совокупности своеобразное приспособление, наличность которого обусловливает целый ряд характерных особенностей растительной клетки.

В. Арц.

 

Биологические мембраны

· Схема строения биологической мембраны

Рис. 1 Схема строения биологической мембраны

· Мембраны нервных клеток

Рис. 2 Мембраны нервных клеток

· Схема распределения мембранных элементов клетки

Рис. 3 Схема распределения мембранных элементов клетки

Биологические мембраны, тонкие пограничные структуры молекулярных размеров, расположенные на поверхности клеток и субклеточных частиц, а также канальцев и пузырьков, пронизывающих протоплазму. Толщина Б. м. не превышает 100 . Важнейшая функция Б. м. — регулирование транспорта ионов, сахаров, аминокислот и других продуктов обмена веществ (см. Проницаемость биологических мембран). Первоначально термин "Б. м." использовали при описании всех видов пограничных структур, встречающихся в живом организме, — покровных тканей, слизистых оболочек желудка и кишечника, стенок кровеносных сосудов и почечных канальцев, миелиновых оболочек нервных волокон, оболочек эритроцитов и др. К середине 20 в. было доказано, что в большинстве пограничных структур эффективную барьерную функцию выполняют не все элементы этих сложных образований, а только мембраны клеток. С помощью электронного микроскопа и рентгеноструктурного анализа удалось показать общность строения поверхностных клеточных мембран эритроцитов, нервных и мышечных клеток, бактерий, плазмалеммы растительных клеток и др. с мембранами субклеточных структур — эндоплазматической сети, митохондрий, клеточных ядер, лизосом, хлоропластов и др. Б.м. занимают огромную площадь (например, в организме человека только поверхностные мембраны имеют площадь, равную десяткам тыс. м2)и играют универсальную регуляторную роль в обмене веществ. Поэтому изучение структуры и функций Б. м. — одна из важнейших задач цитологии и молекулярной биологии. Функции Б. м. многообразны (см. табл.).

Некоторые функции биологических мембран

Функция

Вид мембраны

Активный транспорт веществ

Общая и избирательная диффузия небольших молекул и ионов

Регулирование транспорта ионов и продуктов метаболизма внутри клеток

Все виды мембран

Электроизоляционные свойства

Миелин

Генерация нервного импульса

Мембраны нервных клеток

Преобразование световой энергии в химическую энергию аденозинтрифосфорной кислоты (АТФ)

Мембраны хлоропластов

Преобразование энергии биологического окисления в химическую энергию макроэргических фосфатных связей в молекуле аденозинтрифосфорной кислоты (АТФ)

Мембраны митохондрий

Фагоцитоз, пиноцитоз, антигенные свойства

Мембраны специализированных клеток

Покрывая клетку и отделяя её от окружающей среды, Б. м. обеспечивают морфологическую целостность клеток и субклеточных частиц, их прочность и эластичность. Поддерживая неравномерное распределение ионов калия, натрия, хлора и др. между протоплазмой и окружающей средой, они способствуют появлению разности биоэлектрических потенциалов. Свойства Б. м. в значительной степени определяют генерирование и проведение возбуждения как в нервных и мышечных клетках, так и в местах контакта между ними, т. е. в синаптических окончаниях (см. Синапсы). Б. м. митохондрий служат местом строго упорядоченного расположения ферментов, участвующих в синтезе богатых энергией соединений.

Функциональные свойства Б. м. тесно связаны с их структурной организацией и в значительной степени определяются ею. Ещё в 1902, изучая проницаемость клеточных мембран, немецкий учёный Э. Овертон заметил, что через мембраны легче всего проникают вещества, хорошо растворимые в липидах, и предположил наличие последних в поверхностной клеточной мембране. В 1926 американские биологи Э. Гортер и Ф. Грендел выделили из гемолизированных эритроцитов человека липиды и расположили их в виде мономолекулярного слоя на поверхности воды; общая площадь этого слоя примерно в 2 раза превышала поверхность эритроцитов. Из этого они сделали вывод, что липиды Б. м. расположены в виде бимолекулярного слоя. Поверхностное натяжение клеточной мембраны (0,1 мн/м, или дин/см) меньше натяжения слоя чистого липида (10 мн/м, или дин/см) и близко к поверхностному натяжению белков. Поэтому было предположено, что в Б. м. бимолекулярный липидный слой покрыт с двух сторон слоями белка (структура "сэндвича"). Изучение клеточной поверхности с помощью поляризационного микроскопа позволило предположить, что молекулы липидов расположены перпендикулярно, а молекулы белка — параллельно клеточной поверхности. Методом электропроводности удалось измерить электрическую ёмкость клеточной мембраны, равную 1 мкф/см2, и рассчитать толщину её липидного слоя, которая оказалась равной 55 . На основе всех этих данных английские биологи Л. Даниелли и Г. Даусон в 1935 предложили модель Б. м., в основных чертах удовлетворяющую современным представлениям о структуре Б. м.

Методами рентгеноструктурного анализа, электронной микроскопии, а также оптическими и биохимическими методами показано, что поверхностная клеточная мембрана и мембраны субклеточных частиц — митохондрий, ядер, микросом, лизосом и др. — имеют сходную структуру. Они состоят из бимолекулярного липидного слоя (в основном из фосфолипидов) толщиной 35 и двух нелипидных слоев толщиной 20 каждый (американский исследователь Дж. Робертсон). Внешняя поверхность многих Б. м. покрыта мукополисахаридами. Внутренняя поверхность Б. м. выстлана структурным или ферментным белком (рис. 1, 2). Предполагается, что между молекулами фосфолипидов и белка существует электростатическое притяжение. Мембраны митохондрий несколько отличаются по структуре от поверхностной клеточной мембраны (рис. 3). По-видимому, фосфолипиды и белки в составе внутренней мембраны митохондрий связаны между собой прочным гидрофобным взаимодействием и образуют комплексы ("повторяющиеся единицы"), из которых построена вся мембрана.

Значительный прогресс в представлениях о структуре и функции Б. м. достигнут при изучении их моделей — искусственных фосфолипидных мембран, состоящих из бимолекулярного слоя фосфолипидов. Физические свойства такой плёнки близки к свойствам природных Б. м.: толщина её достигает 61 , а электрическая ёмкость 1 мкф/см2. При добавлении в раствор, омывающий искусственную мембрану, небольшого количества белка электрическое сопротивление её резко уменьшается (~ в 1000 раз), приближаясь к электрическому сопротивлению природных Б. м. При определённых условиях в такой "реконструированной" мембране могут возникать электрические колебания, по амплитуде, длительности и условиям возникновения напоминающие электрические колебания в нервном волокне при возбуждении. Добавление в раствор, омывающий эту мембрану, антибиотиков типа валиномицина, грамицидина и др. вызывало появление избирательной проницаемости для ионов калия и натрия. Исследования Б. м. ведутся интенсивно; в ближайшем будущем можно ожидать полной расшифровки их структуры и функции.

Лит.: Руководство по цитологии, т. 1, М.—Л., 1965, гл. 2; Робертис Э. де, Новинский В., Саэс Ф., Биология клетки, пер. с англ., М., 1967; Робертсон Дж., Мембрана живой клетки, в сборнике: Структура и функция клетки, пер. с англ., М., 1964; Finean J. В., The molecular organization of cell membranes, "Progress in Biophysics and Molecular Biology", 1966, v. 16, p. 143—70.

 

Клеточный сок

Бизнес туры - горячие путевки в солнечногорске. Туристическое Агентство PILIGRIM.

располагаются цитоплазма

Клеточный сок.
Он скапливается в вакуолях и представляет собой жидкое включение. В молодой клетке вакуолей много, но они очень мелкие. По мере роста клеток вакуоли сливаются и часто образуют одну крупную центральную, вокруг которой

располагаются цитоплазма, ядро, пластиды и др: Химический состав клеточного сока сильно варьирует в зависимости от вида, сорта и возраста растения. У большинства растений он имеет кислую реакцию; исключение составляют огурец, дыня и некоторые другие растения, у которых реакция клеточного сока щелочная. Клеточный сок содержит различные сахара (сахарозу, или тростниковый сахар, глюкозу, фруктозу, инулин), органические кислоты (яблочную, лимонную, щавелевую и др.), алкалоиды, дубильные вещества, гликозиды, пигменты, минеральные соли др.

Сахара часто скапливаются в клеточном соке различных органов растений в качестве запасных веществ. Особенно много сахара в стеблях сахарного тростника и в корнях сахарной свеклы.

Органические кислоты в клеточном соке находятся в свободном состоянии в виде солей. Они придают клеточному соку кислый вкус. Физиологическая роль кислот в жизни клетки до сих пор еще мало изучена.

Алкалоиды представляют собой сложные органические соединения, содержащие азот. Они бесцветные, на вкус горькие, многие из них являются сильнейшими ядами, имеющими большое значение в медицине, и используются в качестве лечебных препаратов.

 

 

 

Митохондрии

· Строение митохондрии (схема)

Рис. 1 Строение митохондрии (схема)

· Митохондрия из клетки поджелудочной железы

Рис. 2 Митохондрия из клетки поджелудочной железы

Митохондрии (от греч. mítos — нить и chondríon — зёрнышко, крупинка), хондриосомы, постоянно присутствующий в клетках животных и растений органоид, обеспечивающий клеточное дыхание, в результате которого энергия высвобождается или аккумулируется в легко используемой форме (см. Окисление биологическое, Окислительное фосфорилирование). М. отсутствуют лишь у бактерий, синезелёных водорослей и других прокариотов, где их функцию выполняет клеточная мембрана. М. обычно концентрируются в функционально активных зонах клетки. Это округлые, палочковидные, гантелеобразные и др. образования размером обычно 0,5—1,5 мкм. Форма, число, размеры и функциональное состояние М. меняются в зависимости от внешних воздействий и физиологического состояния клетки, а также при различных патологических процессах. Число М. в клетках разных типов различно. Так, в клетке печени крысы их около 2500; в клетках с высокой функциональной активностью (например, в мотонейронах спинного мозга, в скелетной мышце) число М. особенно велико. Биологический полупериод (обновление половины состава) М. в клетках печени составляет 9,6—10,2 суток, в клетках почки — 12,4 суток. Наблюдаемое обычно на протяжении жизни клетки увеличение числа М. происходит, по-видимому, в результате их деления. Внутреннее строение М. единообразно. Исследования с помощью электронного микроскопа показывают, что основное вещество, или матрикс, М. окружено двойной мембраной: наружной — гладкой, и внутренней, — образующей впячивания, называется кристами (рис. 1, 2). В мембранах М., состоящих из сложных комплексов белков и липидов и организованных в виде дискретных субъединиц, сконцентрировано большинство ферментов, катализирующих процессы окисления и фосфорилирования. Наружная и внутренняя мембраны различаются большим или меньшим содержанием некоторых липидов и набором ферментов. Так, во внутренней мембране локализованы ферментные комплексы, ответственные за перенос электронов и сопряжённое с ним окислительное фосфорилирование; в наружной — фермент, окисляющий моноамины, и некоторые ферменты обмена жирных кислот; в матриксе сконцентрированы ферменты трикарбоновых кислот цикла, окисления жирных кислот и др., а в пространстве между наружной и внутренней мембранами — фермент аденилаткиназа, катализирующий обратимый перенос фосфата с аденозинтрифосфорной кислоты (АТФ) на аденозинмонофосфорную кислоту (АМФ). Неотъемлемые компоненты М. — дезоксирибонуклеиновая кислота (ДНК), расположенная в матриксе в виде нитей и способная к независимой от ДНК ядра репликации, и все типы рибонуклеиновой кислоты (РНК). Кроме того, в М. обнаружены специфические рибосомы (называемые митохондриальными), а также фермент, катализирующий ДНК-зависимый синтез РНК. Присутствие в М. всех элементов системы биосинтеза белка обеспечивает автономный синтез по крайней мере части белков М. По современным представлениям, М. являются как бы эндосимбионтами (см. Симбиогенез) клетки, имеющей оформленное ядро. В процессе эволюции М. могли возникнуть в результате инфицирования примитивных клеток аэробными бактериеподобными организмами, которые затем приспособились к внутриклеточному существованию и взяли на себя функцию дыхания.

Лит.: Ленинджер А., Митохондрия, пер. с англ., М., 1966; Алов И. А., Брауде А. И., Аспиз М. Е., Основы функциональной морфологии клетки, 2 изд., М., 1969; Рудин Л., Уилки Д., Биогенез митохондрий, пер. с англ., М., 1970.

 


Дата добавления: 2015-08-29; просмотров: 86 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
1. Биология как наука, ее достижения, связи с другими науками. Методы изучения живых объектов. Роль биологии в жизни и практической деятельности человека. 5 страница | Определение мировоззрения: 1 страница

mybiblioteka.su - 2015-2024 год. (0.014 сек.)