Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

№ 1 Структура и функции биологических мембран. Ионные каналы мембран и их особенности. Мембранно-ионные механизмы происхождения потенциала покоя. Электрогенез процесса возбуждения. 3 страница



 

№ 20 Фонокардиография: принцип регистрации ФКГ, характеристика тонов сердца и механизм их происхождения. Соотношение ЭКГ и ФКГ.

Фонокардиография — регистрация звуковых явлений, возникающих в различные фазы работы сердца.

I (систолический) тон возникает в начале систолы желудоч­ков; совпадает с конечной частью комплекса QRS ЭКГ; I тон обусловлен звуковыми явлениями при закрытии атриовентрикулярных клапанов Длительность I тона — 0,07—0,13 с.

II (диастолический) тон возникает в начале диастолы; сов­падает с окончанием зубца ГЭКГ. II тон возникает при закрытии полулунных створок аорты и легочного ствола Дли­тельность II тона — 0,06—0,10 с.

• Расстояние от начала I тона до начала II тона называется механической систолой; интервал QRST на ЭКГ — элек­трической систолой.

• Участок ФКГ от начала II тона до начала I тона называ­ется механической диастолой.

• У здорового человека тоны и паузы сердца при 75 уд/мин имеют следующую продолжительность: первый тон — 0,11 с, первая пауза — 0,2 с; второй тон — 0,07 с, вторая пауза — 0,42 с.

• У детей и молодых людей в норме, а у лиц пожилого и сред­него возраста при поражении миокарда желудочков и изме­нении его упруго-эластических свойств на ФКГ регистри­руются III и IV тоны.

IIIтон (тон наполнения, протодиастолический тон) возни­кает в начале диастолы вследствие вибрации стенок желудоч­ков в фазу их быстрого наполнения; отстоит от начала II тона 0,11-0,22 с.

IV(предсердный) тон обусловлен сокращением миокарда предсердий во время их систолы. Возникает через 0,04 — 0,06 с после начала зубца Р на ЭКГ.

№ 21 Факторы, обеспечивающие непрерывное движение крови по сосудам. Кровяное давление в разных отделах кровеносного русла. Факторы, влияющие на величину кровяного давления. Линейная и объемная скорости кровотока: их характеристика и факторы, влияющие на их величину.

Факторы, обеспечивающие непрерывное движение крови по сосудам.

· остаточная сила работы сердца;

· присасывающая сила сердца во время диастолы;

· присасывающая сила грудной клетки в фазу вдоха;

· капиллярные силы поверхностного натяжения;

· наличие в венах клапанов; активность скелетных мышц.

Кровяное давление в разных отделах кровеносного русла.

При продвижении крови от сердца к периферии колебания давления ослабевают в связи с эластичностью аорты и артерий, поэтому кровь в аорте и артериях продвигается толчками, а в артериолах и капиллярах — непрерывно.



Наибольшее падение давления происходит в артериолах и затем в ка­пиллярах. Несмотря на то, что капилляры имеют меньший диаметр, чем артериолы, уменьшение давления на более значительную величину происхо­дит в артериолах. Это связано с их большей длиной по сравнению с капил­лярами. В артериальной части капилляра (на «входе») давление крови равно 35 мм рт.ст., а в венозной (на «выходе») — 15 мм рт.ст.

В полых венах давление приближается к 0 мм рт.ст. При регистрации давления в крупных венах на графике (флебограмма) различают волны пер­вого и второго порядка. К волнам первого порядка относят зубцы а, с, v. Волна а обусловлена застоем крови в полых венах во время систолы правого предсердия. Волна с связана с ударом крови в сонной артерии в стенку яремной вены. Волна v обусловлена застоем крови в полых венах во время систолы правого желудочка.

Факторы, влияющие на величину кровяного давления.

· Ударный объём левого желудочка;

· Растяжимость аорты и крупных артерий;

· Периферическое сосудистое сопротивление, в основном на уровне артериол (контролируется вегетативной нервной системой);

· Количество крови в артериальной системе.

Объемная скорость кровотока. Объемная скорость кровотока зависит от просвета сосуда: самая высокая скорость кровотока — в аорте и полых венах, самая низкая — в каждом отдельном капилляре. Однако объемная скорость кровотока постоянна во всех сосудах одного калибра, так как ко­личество крови, протекающей через разные участки сосудистого русла, на­пример через все артерии и вены, одинаково в единицу времени.

Для расчета величины сопротивления току крови на определенном участке сосудистой сети можно использовать приведенную выше формулу:

Сопротивление току крови тем больше, чем больше ее вязкость, чем больше длина сосуда, по которому течет кровь, и чем меньше радиус этого сосуда. Зависимость сопротивления R от этих величин отражает второе уравнение Пуазейля: где 1 — длина сосуда; r — радиус сосуда; η — вязкость крови.

В соответствии с уравнением максимально большое сопротивление движению крови оказывают артериолы и несколько меньшее — капилляры в связи с их малой длиной по сравнению с артериолами.

Высокое сопротивление артериол и капилляров обусловливает то, что именно на этом участке сосудистого русла давление крови значительно па­дает. 85 % энергии, затрачиваемой сердцем на продвижение крови по орга­низму, расходуется в артериолах и капиллярах, а 10 и 5 % — соответственно в артериях и венах.

Линейная скорость кровотока. Кроме объемной скорости кровотока, важным показателем гемодинамики является линейная скорость кровото­ка, т.е. расстояние, которое частица крови проходит за единицу времени. Линейная скорость кровотока V прямо пропорциональна площади попере­чного сечения сосудов πr2 одногокалибра:

 

Поскольку объемная скорость кровотока не меняется по ходу сосудис­того русла, линейная скорость зависит только от общей поперечной площа­ди сосудов одного калибра. Чем больше площадь, тем меньше скорость.

Во время выброса крови из сердца линейная скорость крови равняется 50—60 см/с. Во время диастолы скорость падает до 0. В артериях макси­мальная скорость кровотока равняется 25—40 см/с. В артериолах толчкооб­разное течение крови сменяется непрерывным. Самая низкая скорость кровотока в капиллярах — 0,5 мм/с. В венах линейная скорость кровотока возрастает до 5—10 см/с.

Линейная скорость максимальна в центре сосуда и минимальна у его стенок в связи с наличием сил трения между кровью и стенкой сосуда.

№ 22 Артериальный пульс, его происхождение и характеристика. Анализ сфигмограммы. Скорость распространения пульсовой волны.

Артериальный пульс, его происхождение и характеристика.

В артериях периодически возникают колебания их стенок, называе­мые артериальным пульсом. Определяются следующие свойства пульса: ритм, частота, напряжение, наполнение, величина и форма.

Ритм. У здорового человека сокращение сердца и пульсовые волны следуют друг за другом через равные промежутки времени, то есть пульс ритмичен.
При расстройствах сердечного ритма пульсовые волны следуют через неодинаковые промежутки времени и пульс становится неритмичным.

Частота. Частота пульса в нормальных условиях соответствует частоте сердечных сокращений и равна 60-80 сокр/мин. При тахикардии увеличивается число пульсовых волн в минуту, появляется частый пульс; при брадикардии пульс становится редким.

Напряжение. Напряжение пульса определяется той силой, которую нужно приложить исследующему для полного сдавления пульсирующей артерии. Это свойство пульса зависит от величины систолического артериального давления. Чем выше давление, тем труднее сжать артерию, - такой пульс называется напряженным, или твердым. При низком давлении артерия сжимается легко - пульс мягкий.

Наполнение. Наполнение пульса отражает наполнение исследуемой артерии кровью, обусловленное в свою очередь тем количеством крови, которое выбрасывается в систолу в артериальную систему и вызывает колебание объема артерии. Оно зависит от величины ударного объема, от общего количества крови в организме и ее распределения.
Величина. Величина пульса, то есть величина пульсового толчка, - понятие, объединяющее такие его свойства, как наполнение и напряжение. Она зависит от степени расширения артерии во время систолы и от ее спадения в момент диастолы. Это в свою очередь зависит от наполнения пульса, величины колебания артериального давления в систолу и диастолу и способности артериальной стенки к эластическому расширению.

Форма. Форма пульса зависит от скорости изменения давления в артериальной системе в течение систолы и диастолы.

Анализ сфигмограммы.

Запись артериального пульса называется сфиг­мографией. На сфигмограмме различают анакроту, катакроту, инцизуру и дикротический подъем, природа которых связана с волнами первого порядка, т.е. с изменением давления крови в аорте при выбросе крови из сердца. Стенка аорты при этом несколько растягивается, а затем возвращается к исходному размеру вследствие своей эластичности. Меха­ническое колебание стенки аорты, называемое пульсовой волной, передает­ся далее на артерии, артериолы и здесь, не доходя до капилляров, затуха­ет.

Скорость распространения пульсовой волны.

Скорость распространения пульсовой волны выше скорости течения крови, в среднем она равна 10 м/с. Поэтому пульсовая волна достигает лучевой артерии в области запястья (наиболее часто используемое место регистрации пульса) примерно за 100 мс при расстоянии от сердца до за­пястья 1 м. Следовательно, при синхронной регистрации пульса лучевой артерии и процессов в сердце пульсовые колебания будут запаздывать на 100 мс.

Если колебания давления, распространяясь от сердца к периферии, по­степенно затухают, то амплитуда каждой фазы пульса в периферических ар­териях увеличивается. В артериолах пульс затухает окончательно и отсутст­вует в капиллярах, венулах, мелких и средних венах. В крупных венах появ­ляется венный пульс.

 
   

 

 

№ 23 Кровообращение в капиллярах. Механизмы транскапиллярного обмена жидкости и других веществ между кровью и тканями.

Капилляры — это тончайшие сосуды, расположенные в межклеточных пространствах, тесно примыкая к клеткам тканей различных органов. Скорость кровотока в капиллярах крайне мала. Небольшая толщина стенки капилляра и его тесный контакт с клетками обеспечивают возможность обмена веществ в системе кровь/межклеточная жидкость.

Кровообращение в капиллярах.

Особенности капилляров большого круга кровообращения.

• Различные ткани организма неодинаково насыщены капиллярами: минимально-насыщена костная ткань, максимально - мозг, почки, сердце, железы внутренней секреции.

• Капилляры большого круга имеют большую общую поверхность.

• Капилляры близко расположены к клеткам (не далее 50 мкм), а в тканях с высоким уровнем метаболизма (печень) - еще ближе (не далее 30 мкм).

• Они оказывают высокое сопротивление току крови.

• Линейная скорость кровотока в них низкая (0,3-0,5 мм/с).

• Относительно большой перепад давления между артериальной и венозной частями капилляра.

• Как правило, проницаемость стенки капилляра высокая.

• В обычных условиях работает 1/3 всех капилляров, остальные 2/3 находятся в резерве - закон резервации.

• Из работающих капилляров часть функционирует (дежурят), а часть - не функционируют - закон "дежурства" капилляров.

Особенности капилляров малого круга кровообращения:

• Капилляры малого круга кровообращения короче и шире по сравнению с капиллярами большого круга.

• В этих капиллярах меньше сопротивление току крови, поэтому правый желудочек во время систолы развивает меньшую силу.

• Сила правого желудочка создает меньшее давление в легочных артериях и, следовательно, в капиллярах малого круга.

• В капиллярах малого круга практически нет перепада давления между артериальной и венозной частями капилляра.

• Интенсивность кровообращения зависит от фазы дыхательного цикла: уменьшение на выдохе и увеличение на вдохе.

• В капиллярах малого круга не происходит обмена жидкости и растворенных в ней веществ с окружающими тканями.

• В легочных капиллярах осуществляется только газообмен.

Механизмы транскапиллярного обмена жидкости и других веществ между кровью и тканями.

Механизм транскапиллярного обмена. Транскапиллярный (транссосудистый) обмен может осуществляться за счет пассивного транспорта (диффузия, фильтрация, абсорбция), за счет активного транспорта (работа транспортных систем) и микропиноцитоза.

Фильтрационно-абсорбционный механизм обменамежду кровью и интерстициальной жидкостью. Этот механизм обеспечивается за счет действия следующих сил. В артериальном отделе капилляра большого круга кровообращения гидростатическое давление крови равно 40 мм рт. ст. Сила этого давления способствует выходу (фильтрации) воды и растворенных в ней веществ из сосуда в межклеточную жидкость. Онкотическое давление плазмы крови, равное 30 мм рт. ст., препятствует фильтрации, т. к. белки удерживают воду в сосудистом русле. Онкотическое давление межклеточной жидкости, равное 10 мм. рт. ст., способствует фильтрации - выходу воды из сосуда. Таким образом, результирующая всех сил, действующих в артериальном отделе капилляра, равна 20 мм. рт. ст. (40+10-30=20 мм рт. ст.) и направлена из капилляра. В венозном отделе капилляра (в посткапиллярной венуле) фильтрация будет осуществляться следующими силами: гидростатическое давление крови, равное 10 мм рт. ст., онкотическое давление плазмы крови, равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна 10 мм рт. ст. (-10+30-10=10) и направлена в капилляр. Следовательно в венозном отделе капилляра происходит абсорбция воды и растворенных в ней веществ. В артериальном отделе капилляра жидкость выходит под воздействием силы в 2 раза большей, чем она входит в капилляр в его венозном отделе. Возникающий, таким образом, избыток жидкости из интерстициальных пространств оттекает через лимфатические капиляры в лимфатическую систму.

В капиллярах малого круга кровообращения транскапиллярный обмен осуществляется за счет действия следующих сил: гидростатическое давление крови в капиллярах, равное 20 мм рт. ст., онкотическое давление плазмы крови; равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна нулю. Следовательно, в капиллярах малого круга кровообращения обмена жидкости не происходит.

Диффузионный механизм транскапиллярного обмена. Этот вид обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Это обеспечивает движение веществ по концентрационному градиенту. Такое движение возможно потому, что размеры молекул этих веществ меньше пор мембраны и межклеточных щелей. Жирорастворимые вещества проходят мембрану независимо от величины пор и щелей, растворяясь в ее липидном слое (например, эфиры, углекислый газ и др.).

Активный механизм обмена - осуществляется эндотелиальными клетками капилляров, которые при помощи транспортных систем их мембран переносят молекулярные вещества (гормоны, белки, биологически активные вещества) и ионы.

Пиноцитозный механизм обеспечивает транспорт через стенку капилляра крупных молекул и фрагментов частей клеток опосредованно через процессы эндо- и экзопиноцитоза.

№ 24 Особенности кровообращения в легких, сердце, мозге, почках и печени

Газообмен, происходящий в малом круге, обусловил ряд особенностей кровообращения, которые заключаются в следующем:

· в малом круге широкие (15 мкм) и короткие капилляры;

· давление в легочном стволе в момент систолы намного меньше, чем в аорте (25—30 мм рт.ст.), хотя правый желудочек выбрасывает крови столько же, сколько левый;

· малое сопротивление току крови в легочных капиллярах (8— 10 мм рт.ст.);

· наличие артериоловенулярных анастомозов (шунтов), которые спо­собствуют сдерживанию повышения давления в легочном стволе.

Особенности венечного кровообращения. Венечный (коронарный) круг кровообращения начинается от аорты и заканчивается венозным синусом, который впадает в правое предсердие, или отдельными венами, проникаю­щими в полость сердца (табезиевы вены). Венечный кровоток потребляет 6—8 % крови от всего систолического объема. Для венечного круга харак­терны следующие особенности:

· высокое давление, поскольку венечные сосуды начинаются от аорты;

· венечные сосуды образуют в сердечной мышце густую капиллярную сеть с множеством сосудов конечного типа, что представляет опас­ность при их закупорке, особенно в преклонном возрасте;

· кровь в венечные сосуды поступает во время диастолы. Это связано с тем, что в фазе систолы устья капилляров закрываются полулунными клапанами аорты, а также с тем, что во время систолы миокард со­кращен, венечные сосуды сжаты и поступление крови в них затруд­нено;

· в период диастолы миоглобин сердечной мышцы насыщается кисло­родом, который он очень легко отдает сердцу в фазу систолы;

· наличие артериоловенулярных анастомозов и артериолосинусоидных шунтов;

· особая регуляция тонуса венечных сосудов.

Особенности мозгового кровообращения. При нормальной частоте сер­дечных сокращений в мозговую ткань поступает в среднем около 750 мл крови в 1 мин, или 15 % общего сердечного выброса.

Во всех мозговых артериях отсутствует пульсация, что достигается по­стоянным объемом черепной коробки и соответственно постоянным уров­нем внутричерепного давления. Артерии мозга имеют резко выраженную извилистость, что позволяет демпфировать (сглаживать) исходную пульса­цию, наблюдающуюся в сонных артериях.

В отличие от других органов (легкие, сердце) в мозге отсутствуют анас­томозы между артериями и венами, а также «дежурные» капилляры, т.е. все капилляры постоянно функционируют.

Объем крови в мозге постоянен, поскольку черепная коробка герме­тична и сохраняет постоянный объем. Изменение кровоснабжения отдель­ных областей мозга достигается перераспределением крови в сосудах и из­менением скорости кровотока.

Особенности кровообращения в почках

В обычных условиях через обе почки, составляющие лишь около 0,43% массы тела здорового человека, проходит от 1/4 до 1/5 объема крови, выбрасываемой сердцем. Кровоток в корковом веществе почек достигает 4-5 мл/мин на 1 грамм ткани — это наиболее высокий уровень органного кровотока.

В почках выделяют систему коркового и мозгового кровотока. Хотя емкость сосудистого русла у них примерно одинакова, около 94% крови протекает по системе корковых сосудов и лишь 6% по системе мозговых. Корковый кровоток тесно связан с капиллярами клубочка. Одна из главных особенностей отличающих корковый кровоток от мозгового состоит в том, что в широких пределах изменения артериального давления (от 90 до 190 мм рт.ст.) корковый кровоток почки остается почти постоянным. Это обусловлено специальной системой саморегуляции — ауторегуляции кортикального кровотока. Ауторегуляция коркового кровотока обеспечивает постоянство процессов, лежащих в основе мочеобразования в условиях значительных изменений внепочечной гемодинамики.

Особенности портального кровообращения. Ткань печени снабжается кровью через сосуды воротной вены и печеночной артерии. Печеночная ар­терия берет начало от чревного ствола, отходящего от брюшной аорты. Во­ротная вена собирает кровь от всего желудочно-кишечного тракта, подже­лудочной железы и селезенки. По воротной вене в печень поступают пита­тельные вещества для обезвреживания токсичных компонентов и отложе­ния гликогена. От поджелудочной железы поступает инсулин, регулирую­щий обмен Сахаров. Из селезенки в кровяное русло попадают продукты распада эритроцитов (гемоглобин), которые используются в печени для вы­работки желчи.

№ 25 Регуляция тонуса кровеносных сосудов: нервные и гуморальные механизмы регуляции сосудистого тонуса.

Регуляция сосудов - это регуляция сосудистого тонуса, который определяет величину их просвета. Просвет сосудов определяется функциональным состоянием их гладкой мускулатуры, а просвет капилляров зависит от состояния клеток эндотелия и гладкой мускулатуры прекапиллярного сфинктера.

Гуморальная регуляция сосудистого тонуса. Эта регуляция осуществляется за счет тех химических веществ, которые циркулируют в кровеносном русле и изменяют ширину просвета сосудов. Все гуморальные факторы, которые оказывают влияние на тонус сосудов, делят на сосудосуживающе (вазоконстрикторы) и сосудорасширяющие (вазодилятаторы).

К сосудосуживающим веществам относятся:

адреналин - гормон мозгового вещества надпочечников, суживает артериолы кожи, органов пищеварения и легких, в низких концентрациях расширяет сосуды мозга, сердца и скелетных мышц, обеспечивая тем самым адекватное перераспределение крови, необходимое для подготовки организма к реагированию в трудной ситуации;

• норадреналин - гормон мозгового вещества надпочечников по своему действию близок к адреналину, но его действие более выражено и более продолжительно;

вазопрессин - гормон, образующийся в нейронах супраоптического ядра гипоталамуса, форму в клетках задней доли гипофиза, действует в основном на артериолы;

• серотонин - вырабатывается клетками стенки кишки, в некоторых участках головного мозга, а также выделяется при распаде кровяных пластинок;.

К сосудорасширяющим веществам относятся:

гистамин - образуется в стенке желудка, кишечника, других органах, расширяет артериолы;

ацетилхолин - медиатор парасимпатических нервов и симпатических холинергических вазодилятаторов, расширяет артерии и вены;

брадикинин - выделен из экстрактов органов (поджелудочной железы, подчелюстной слюнной железы, легких), образуется при расщеплении одного из глобулинов плазмы крови, расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез;

простагландины - образуются во многих органах и тканях, оказывают местное сосудорасширяющее действие;

Нервная регуляция сосудистого тонуса. Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой. Сосудосуживающий эффект преимущественно оказывают волокна симпатического отдела вегетативной (автономной) нервной системы, а сосудорасширяющее - парасимпатические и, частично, симпатические нервы. Сосудосуживающее действие симпатических нервов не распространяется на сосуды головного мозга, сердца, легких и работающих мышц. Сосуды этих органов при возбуждении симпатической нервной системы расширяются. Следует также отметить, что не все парасимпатические нервы являются вазодилятаторами, например, волокна парасимпатического блуждающего нерва суживают сосуды сердца.

Сосудосуживающие и сосудорасширяющие нервы находятся под влиянием сосудодвигательного центра. Вазомоторный или сосудодвигательный центр - это совокупность структур, расположенных на различных уровнях ЦНС и обеспечивающих регуляцию кровообращения. Структуры, входящие в состав сосудодвигательного центра, расположены, в основном, в спинном и продолговатом мозге, гипоталамусе, коре больших полушарий. Сосудодвигательный центр состоит из прессорного и депрессорного отделов.

Депрессорный отдел снижает активность симпатических сосудосуживающих влияний и, тем самым, вызывает расширение сосудов, падение периферического сопротивления и снижение артериального давления. Прессорный отдел вызывает сужение сосудов, повышение периферического сопротивления и давления крови.

Активность нейронов сосудодвигательного центра формируется нервными импульсами, идущими от коры больших полушарий головного мозга, гипоталамуса, ретикулярной формации ствола мозга, а также от различных рецепторов, особенно, расположенных в сосудистых рефлексогенных зонах.

 
   
   

№ 26 Кровообращение в венах. Факторы, обеспечивающие возврат крови к сердцу.

Вены несут кровь от тканей к сердцу. Беря начало из венозных капилляров, венулы сливаются друг с другом и образуют более крупные сосуды — вены. По мере приближения к сердцу они все более укрупняются, формируя венозные стволы. В целом вены крупнее и многочисленнее артерий. Глубокие вены располагаются в тканях и обычно сопровождают артерии. Поверхностные вены располагаются под кожей и иногда просматриваются визуально. Они соединяются с глубокими прежде, чем образуют крупные ве­нозные стволы.

Дыхательные движения диафрагмы являются компонентом "мышечного насоса", обеспечивающего одностороннее продвиже­ние венозной крови к сердцу.

Особенности кровообращения в венах. Чем дальше от сердца, тем больше сопротивление и тем больше падает давление в сосудах. Разность давлений в венозном отделе сосудистой системы невелика, примерно 15 мм рт.ст. Поэтому возврат крови по венам к сердцу затруднен. Существуют специальные факторы, способствующие движению крови по венам.

Вены являются областью низкого давления. Они содержат 65-70 % объема циркулирующей крови. Поскольку толщина мышечного слоя стенки вен гораздо меньше, чем у артерий, этот тип сосудов более растяжим. Это позволяет крови накапливаться в венах. Вены называют «емкостными» сосудами. Вены могут вместить значительное количество крови, и при этом уровень давления в них существенно не увеличится. Таким образом, вены являются как бы резервуаром крови переменной емкости.

Факторы, обеспечивающие возврат крови к сердцу.

· остаточная сила работы сердца;

· присасывающая сила сердца во время диастолы;

· присасывающая сила грудной клетки в фазу вдоха;

· капиллярные силы поверхностного натяжения;

· наличие в венах клапанов; активность скелетных мышц.

№ 27 Функциональная система, обеспечивающая оптимальный для метаболизма уровень артериального давления. Характеристика узловых механизмов.

Характеристика узловых механизмов.

Конечным приспособительным результатом, формирующим данную систему, является оптимальный для метаболизма уровень давления крови. Любое отклонение от этого уровня воспринимается барорецепторами, трансформируется в нервные импульсы и передается в ЦНС. Затем эффе­рентные команды к исполнительным органам избирательно включают ком­плекс различных физиологических механизмов, обеспечивающих возвра­щение артериального давления к оптимальному для метаболизма уровню. Включение периферических механизмов в данной функциональной систе­ме происходит за счет нервных и гуморальных процессов по принципу саморегуляции.

Полезный приспособительный результат. Измерение артериального давления в различных участках кровеносного русла показывает, что по мере удаления от сердца к периферии величина его постепенно снижается. В аорте и крупных артериях человека давление максимальное — 120 и 80 мм рт.ст., в мелких артериях оно снижается до 85 мм рт.ст., в артериолах происходит дальнейшее его снижение с 75 до 40 мм рт.ст., а в капиллярах давление приближается к 30—15 мм рт.ст.

№ 28 Классификация и основные свойства барорецепторов. Основные рефлексогенные зоны. Механизмы регуляции сосудистого тонуса и кровяного давления.

Барорецепторы. Колебания артериального давления воспринимаются специальными образованиями, расположенными в стенке сосудов,— барорецепторами, или прессорецепторами. Возбуждение их происходит в результате растяже­ния артериальной стенки при повышении давления; следовательно, по принципу реагирования они представляют собой типичные механорецепторы. В световом микроскопе барорецепторы видны как широкие разветвле­ния нервных окончаний остроконечного типа, свободно заканчивающиеся в адвентиции сосудистой стенки.

Классификация. По характеру активностиразличают два вида рецепторов. Рецепторы типа А, в которых максимум импульсации возникает в момент систолы предсердий, и рецепторы типа Б, разряд которых приходится на время диа­столы, т.е. при заполнении предсердий кровью.

Физиологические свойства барорецепторов. Все барорецепторы облада­ют рядом физиологических свойств, которые позволяют им выполнять ос­новную функцию — слежение за величиной артериального давления.

· Каждый барорецептор или каждая группа барорецепторов воспри­нимает только свои определенные параметры изменения артериаль­ного давления. В зависимости от специфики реакций на изменения давления различают три группы барорецепторов.

· При быстром перепаде давления барорецепторы отвечают более вы­раженными изменениями залповой активности, чем при медлен­ном, постепенном изменении давления. При резком нарастании давления уже на небольшой прирост наблюдается тот же прирост импульсации, как и при плавном изменении давления на значи­тельно большие величины.

· Барорецепторы обладают свойством наращивать импульсацию в геометрической прогрессии на одинаковую величину прироста арте­риального давления в зависимости от его исходного уровня.

· Большинство барорецепторов воспринимает колеблющееся давле­ние в своем диапазоне. При воздействии на них постоянного давле­ния, что наблюдается при его стойком повышении или снижении, они перестают реагировать учащением импульсации, т.е. адаптиру­ются. По мере увеличения давления (0—140 мм рт.ст.) частота импульсации нарастает. Однако при стойком повышении в диапазоне от 140 до 200 мм рт.ст. наступает явление адаптации — частота импульсации остается без изменений.

Основные рефлексогенные зоны.

Барорецепторы рассеяны по всему кровеносному руслу. Однако в отдельных участках крупных сосудов они образуют своеобразные скопления — барорецептивные рефлексогенные зоны, которые обнаружены у всех мле­копитающих в обоих сонных синусах, дуге аорты, мезентериальных сосудах брыжейки. В барорецептивных зонах стенки сосудов, как правило, более тонки и эластичны, содержат меньшее количество мышечных элементов, что способствует лучшему восприятию изменений артериального давления.

Барорецепторы в малом круге кровообращения по своей структуре сходны с рецепторами синокаротидных зон и дуги аорты и концентрируют­ся вблизи бифуркации главных легочных артерий. Повышение артериаль­ного давления в легочном стволе приводит к растяжению ее стенок и воз­никновению импульсов в рецепторах. Электрофизиологическое и морфо­логическое исследование показало наличие рецепторов растяжения в каме­рах сердца. В правом и левом предсердиях эти рецепторы расположены субэндокардиально в области впадения полых вен в правом предсердии и легочных вен — в левом предсердии.

Механизмы регуляции сосудистого тонуса и кровяного давления.

Регуляция сосудов - это регуляция сосудистого тонуса, который определяет величину их просвета. Просвет сосудов определяется функциональным состоянием их гладкой мускулатуры, а просвет капилляров зависит от состояния клеток эндотелия и гладкой мускулатуры прекапиллярного сфинктера.

Гуморальная регуляция сосудистого тонуса. Эта регуляция осуществляется за счет тех химических веществ, которые циркулируют в кровеносном русле и изменяют ширину просвета сосудов. Все гуморальные факторы, которые оказывают влияние на тонус сосудов, делят на сосудосуживающе (вазоконстрикторы) и сосудорасширяющие (вазодилятаторы).

Нервная регуляция сосудистого тонуса. Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой. Сосудосуживающий эффект преимущественно оказывают волокна симпатического отдела вегетативной (автономной) нервной системы, а сосудорасширяющее - парасимпатические и, частично, симпатические нервы. Сосудосуживающее действие симпатических нервов не распространяется на сосуды головного мозга, сердца, легких и работающих мышц. Сосуды этих органов при возбуждении симпатической нервной системы расширяются. Следует также отметить, что не все парасимпатические нервы являются вазодилятаторами, например, волокна парасимпатического блуждающего нерва суживают сосуды сердца.

 
   

 


Дата добавления: 2015-08-28; просмотров: 43 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.029 сек.)







<== предыдущая лекция | следующая лекция ==>