Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

№ 1 Структура и функции биологических мембран. Ионные каналы мембран и их особенности. Мембранно-ионные механизмы происхождения потенциала покоя. Электрогенез процесса возбуждения. 8 страница



№ 82 Продолговатый мозг, его нейронная организация, участие в процессах саморегуляции функции организма.

Интегративная деятельность продолговатого мозга обусловлена широ­ким спектром афферентных потоков, поступающих от многочисленных экстеро- и интерорецепторов. Она проявляется в многочисленных реакци­ях, эффекторами в которых являются как скелетные и гладкие мышцы, так и железы. В продолговатом мозге находятся ядра IX и X пар черепных нервов (языкоглоточный и блуждающий нервы) и XI и XII пар черепных нервов (добавочный и подъязычный нервы).

С участием ядер черепных нервов осуществляются такие врожденные сложноорганизованные пищевые реакции, как сосание, глотание, жевание. На уровне продолговатого мозга формируются защитные реакции — чиха­нье, кашель, рвота, глотание, мигание, слезоотделение.

Обширны связи продолговатого мозга с хеморецепторами и барорецепторами сосудов, интерорецепторами внутренних органов и вестибулорецепторами. Влияние этих органов определяет функционирование на уровне продолговатого мозга дыхательного и сердечно-сосудистого цент­poв.

В продолговатом мозге находятся ретикулярные структуры, которые дают начало ретикулоспинальному тракту, контролирующему сегментар­ные двигательные реакции спинного мозга. Нисходящие влияния рети­кулярной формации продолговатого мозга возбуждают α- и γ- мотонейроны сгибателей и тормозят мотонейроны разгибателей, что обусловли­вает адекватное перераспределение тонуса мышц и амплитуды их сокра­щения.

№ 83 Ретикулярная формация: ее строение, локализация в центральной нервной системе. Центры ретикулярной формации и их участие в регуляции функций организма. Особенности восходящих и нисходящих влияний ретикулярной формации.

Морфофункциональная организация. Встволовой части мозга, куда вхо­дит и средний мозг, расположена структура, состоящая из нейронов с ко­роткими отростками и обозначаемая как сетевидная, или ретикулярная, формация. В ней выделяют две части: каудальную, входящую в состав про­долговатого мозга и моста, и ростральную, или мезэнцефальную, ретику­лярную формацию. Первая часть дает начало ретикулоспинальному пути, влияющему на спинальные реакции. Мезэнпефальная ретикулярная фор­мация дает начало восходящей активирующей системе, включающей не­специфические ядра таламуса.



Восходящие активирующие влияния. Ретикулярная формация среднего мозга осуществляет восходящие активирующие генерализованные влияния на кору большого мозга.При электрическом раздражении ретикулярной форма­ции наблюдается переход низкочастотной высокоамплитудной электричес­кой активности коры в низкоамплитудную высокочастотную активность. Такие же изменения электрической активности головного мозга наблюда­ются при переходе организма от состояния сна к бодрствованию или при воздействии на организм самых различных раздражителей. Активное состо­яние ретикулярной формации всегда поддерживается непрерывным пото­ком афферентных импульсов, поступающих в ретикулярную формацию по коллатеральным волокнам от проекционных сенсорных проводящих путей.

Благодаря этому при воздействии раздражителей в кору большого мозга всегда поступает два потока возбуждений. Один из них направляется в кору большого мозга по проекционным сенсорным путям и достигает специфи­ческой для данного раздражителя проекционной области. Другой поток возбуждений генерализованно направляется от ретикулярной формации к коре, усиливая ее активированное состояние. Генерализованное активи­рующее влияние ретикулярной формации является непременным условием поддержания бодрствующего состояния мозга. Лишение коры большого мозга источника возбуждающей энергии, каковым является ретикулярная формация, приводит к переходу головного мозга в недеятельное состояние, сопровождаемое медленноволновой высокоамплитудной электрической ак­тивностью, характерной для состояния сна.

Неспецифические и специфические влияния ретикулярной формации. В связи с тем что генерализованная активация коры большого мозга возни­кает при любом афферентном воздействии, восходящие активирующие влияния ретикулярной формации считаются неспецифическими, не связан­ными со спецификой действующего раздражителя. В то же время при фор­мировании целостных приспособительных реакций организма восходящие активирующие влияния ретикулярной формации на кору головного мозга имеют специфический характер, т.е. включены в нейрофизиологические механизмы формирования конкретной мотивации — пищевой, половой, оборонительной.

Функциональная активность ретикулярной формации обеспечивается не только обширной мультисенсорной конвергенцией возбуждений к ее нейронам и конвергенцией возбуждений, поступающих от коры большого мозга, мозжечка и других подкорковых структур, но и многочисленными гуморальными факторами, по отношению к которым ретикулярная форма­ция обладает высокой чувствительностью. Такие гуморальные регуляторы, как адреналин и С02, являются мощными возбудителями нейронов ретику­лярной формации. Нейроны ретикулярной формации содержат: норадреналин, серотонин и дофамин.

Связь с другими структурами мозга. Ретикулярная формация имеет функциональные и анатомические связи с гипоталамусом, таламусом, продолговатым мозгом и другими отделами головного мозга, поэтому все наиболее общие функции организма, такие как терморегуляция, пищевые и болевые реакции, регуляция постоянства внутренней среды организма, сон и бодрствование, находятся в функциональной зависимости от свойств ре­тикулярной формации ствола мозга.

№ 84 Средний мозг, его строение и функции. Роль среднего мозга в регуляции топических рефлексов. Децеребрационная регидность и причины её возникновения.

Средний мозг: выделяют крышу и ножки. Полостью среднего мозга является водопровод мозга. Верхней (передней) границей среднего мозга на его вентральной поверхности служат зрительные тракты и сосцевидные тела, на задней — передний край моста. На дорсальной поверхности верх­няя (передняя) граница среднего мозга соответствует задним краям (поверхностям) таламусов, задняя (нижняя) — уровню выхода корешков блокового нерва.

Крыша среднего мозга расположена над водо­проводом мозга. Крыша среднего мозга состоит из четырех возвышений — холмиков. Последние отделены друг от друга бороздками. Верхние холмики крыши среднего мозга (четверо­холмия) и латеральные коленчатые тела выполняют функцию подкорковых зрительных центров. Нижние холмики и медиаль­ные коленчатые тела являются подкорковыми слуховыми цент­рами.

Ножки мозга выходят из моста. На медиальной поверх­ности каждой из ножек мозга располагается продольная глазо­двигательная борозда, из которой выходят корешки глазодви­гательного нерва. В покрышке среднего мозга залегают ядра среднего мозга и проходят восходящие проводящие пути. Основание ножки мозга целиком состоит из белого вещества, здесь проходят нисходящие проводящие пути.

В среднем мозге расположены подкорковые центры слуха и зрения, обеспечивающие иннервацию произвольных и непроиз­вольных мышц глазного яблока, а также среднемозговое ядро V пары. Через средний мозг проходят восходящие (чувстви­тельные) и нисходящие (двигательные) проводящие пути.

Основные интегративные функции среднего мозга связаны с организа­цией двигательных актов и анализом афферентных потоков возбуждения.

Сторожевые реакции: осуществление организмом сторожевых, или старт-реак­ций. Легкая степень таких реакций у человека выражается вздрагиванием при неожиданном звуке или прикосновении; при более сильных неожидан­ных раздражителях человек вскрикивает, а иногда даже бежит. Старт-реак­ции обеспечивают мгновенную мобилизацию всего организма к активной деятельности при возникновении опасности. Нейрофизиологический механизм осуществления старт-реакций связан с функционированием бугорков четверохолмия. Нейроны верхних бугорков четверохолмия обеспечивают организацию ориентировочного поведения на зрительные стимулы. Нейроны нижних бугорков четверохолмия организу­ют ориентировочные двигательные реакции на звук.

Тонические реакции: связаны с перераспределением тонуса различ­ных групп мышц. К этим структурам относятся красное ядро и латеральное преддверное ядро. Тонические реакции возникают при изменении положения тела или отдельных его час­тей (например, головы) в пространстве. Они предотвращают нарушение равновесия тела или восстанавливают уже нарушенное равновесие.

Реакции установки тела. Совокупность тонических реакций называется реакциями установки тела. Они делятся на две группы: статические и стато-кинетические. Статические реакции возникают при изменении положения тела, не связанном с его перемещением в пространстве. При этом изменяется тонус различных групп мышц для поддержания естественной позы в случае ее изменения. Статокинетические реакции проявляются в перераспре­делении тонуса скелетных мышц, которое обеспечивает сохранение равно­весия тела человека при угловых и линейных ускорениях активного или пассивного перемещения его в пространстве. Подобные ситуации возника­ют при естественных передвижениях человека — ходьбе, беге. Восприятие направления и силы ускорения, осуществляется рецепторами отолитового аппарата и полукруж­ных каналов лабиринта внутреннего уха. Сигналы, поступающие в средний мозг от вестибулорецепторов, вызывают вращательные реакции глаз, голо­вы, конечностей и туловища.

Перерезка у животного ствола мозга между передними и задними буграми четверохолмия (операция перерезки ствола мозга называется децеребрацией) вызывает состояние скелетной мускулатуры, которое называется децеребрационной ригидностью. Это состояние характеризуется резким повышением тонуса разгибательной мускулатуры. Конечности сильно вытянуты, голова запрокинута, спина выгнута.

 
   
   

№ 85 Промежуточный мозг. Гипоталамус, его функциональная организация. Роль гипоталамуса в регуляции гомеопатических, вегетативных и эндокринных функций организма, в формировании врождённых реакции, в механизмах эмоции и мотивации.

Границами промежуточного мозга на основании головного мозга являются сзади — передний край заднего продырявленно­го вещества и зрительные тракты, спереди — передняя поверх­ность зрительного перекреста. На дорсальной поверхности зад­ней границей является борозда, отделяющая верхние холмики среднего мозга от заднего края таламусов. Переднебоковая гра­ница разделяет с дорсальной стороны промежуточный мозг и ко­нечный.

Промежуточный мозг включает следующие отделы: таламическую область (область зрительных бугров, зрительный мозг), гипоталамус, объ­единяющий вентральные отделы промежуточного мозга; III же­лудочек.

Структуры ЦНС, обеспечивающие регуляцию деятельности внутренних органов, поддерживающие постоянство внутренней среды организма и формирующие мотивационные состояния организма, объединяются поня­тием «висцеральный мозг». Он включает гипоталамус и лимбические обра­зования ЦНС.

Гипоталамус является структурой ЦНС, осуществляющей сложную интеграцию и приспособление функций различных внутренних органов к целостной деятельности организма. Гипоталамус объединяет и связывает в единое целое механизмы гуморальной и нервной регуляции. Под контро­лем гипоталамуса находятся такие железы внутренней секреции, как гипо­физ, щитовидная, половые железы, надпочечники и др. Регуляция тропных функций гипофиза осуществляется путем выделения гипоталамическими нейронами гормонов, поступающих в гипофиз в основном через порталь­ную систему сосудов. Выделение тропных гормонов гипофиза приводит к изменению функций эндокринных желез, секрет которых попадает в кровь и в свою очередь может действовать на гипоталамус (обратная связь).

Передняя область гипоталамуса принимает непосредственное участие в регуляции выделения гонадотропинов и оказывает стимулирующее влияние на половое развитие организма. Гормоны нейрогипофиза являются продук­том секреции супраоптического ядра гипоталамуса (например, вазопрессин или антидиуретический гормон).

Регуляция вегетативных функций. Под контролем гипоталамических центров находятся такие интегративные функции организма, как поддер­жание постоянства температуры тела, углеводный, жировой и водный об­мены организма, регуляция давления крови, регуляция половых функций и функций желудочно-кишечного тракта и др.

В зависимости от выполняемых функций в гипоталамусе выделяют две зоны. Первой зоной является динамогенная, занимающая среднюю и заднюю части гипоталамуса. При ее возбуждении наблюдаются расшире­ние зрачка, повышение кровяного давления, активация дыхания, повыше­ние двигательной возбудимости, т.е. проявления симпатических влияний вегетативной нервной системы. Второй зоной является трофогенная, находящаяся в преоптической области гипоталамуса. Возбуждение ее про­является в сужении зрачка, снижении кровяного давления, урежении дыха­ния, рвоте, дефекации, мочеиспускании, слюноотделении, т.е. симптомах, характерных для влияний парасимпатической нервной системы.

В гипоталамусе располагаются центры голода, насыщения, жажды и др. Получая афферентные потоки возбуждений от интерорецепторов (осморе-цепторов, хеморецепторов, терморецепторов и т.д.) и интегрируя их с гумо­ральными влияниями на нервные клетки гипоталамуса, эти центры форми­руют соответствующие мотивационные состояния организма.

Гипоталамус относится также к гипногенным структурам ЦНС, кото­рые в функциональном взаимодействии обеспечивают смену сна и бодрст­вования.

№ 86 Мозжечок. Морфологическая и функциональная организация коры и ядер мозжечка. Участие мозжечка в регуляции познотонических рефлексов и висцеральных функций организма.

Мозжечок располагается дорсальнее от моста и от верхней дорсальной части про­долговатого мозга. Он лежит в задней черепной ямке.

Интрегративные фкнкции мозжечка связаны с организацией двигательных актов и регуляцией вегетативных функций. При осуществлении двигательного акта перемещающиеся части тела испытывают влияние инерционных сил, что нарушает плавность и точность выполняе­мого движения. Коррекция движения осуществляется структурами мозжеч­ка. В промежуточную часть мозжечка по коллатералям кортико-спинального тракта поступает информация о планируемом движении, а также афферентация от соматосенсорной системы. В результате формируется возбуждения к красному ядру и стволовым двигательным центрам, обеспе­чивающие взаимную координацию движений.

Особенно большое значение мозжечок имеет для построения быстрых баллистических целенаправленных движений Коррекция формируется в полушариях мозжеч­ка и его зубчатом ядре на основе импульсации, поступающей от всех облас­тей коры большого мозга, и фиксируется в мозжечке. Связь мозжечка с высшими вегетативными центрами и с некоторыми железами внутренней секреции обеспечивает его участие в регуляции веге­тативных функций. Мозжечок оказывает стабилизирующее влияние на дея­тельность пищеварительного тракта, дыхание, деятельность сердца и тонус сосудов, терморегуляцию, обмен веществ.

Центральное место среди структур экстрапирамидной системы занима­ют базальные ядра. При их участии осуществляется синергизм всех эле­ментов таких сложных двигательных актов, как ходьба, бег, лазанье; достига­ются плавность движений и установка исходной позы для их осуществления.

Функции полосатого тела и бледного шара. Среди структурных образова­ний экстрапирамидной системы полосатое тело считается высшим подкорковым регуляторно-координационным центром организации движе­ний. Полосатое тело и бледный шар, влияя на нейроны спинного мозга через структуры среднего и продолговатого мозга, координируют тонус и фазовую двигательную активность мышц. Бледный шар оказывает тормозяшее воздействие на ядра среднего мозга.

В отличие от полосатого тела (стриатума) неостриатумвключает хвостатое ядро и скор­лупу. Эти образования вызывают торможение моторного компонента условных и безусловных реакций организма.

Особенности морфофункциональной организации. Базальные ядра не имеют прямых выходов к мотонейронам спинного мозга, а опосредуют свои влияния на них через ретикулоспинальный тракт, являющийся как бы общим конечным путем. Эти влияния адресуются к γ-мотонейронам спин­ного мозга, которые регулируют поток проприоцептивных афферентных импульсов, поступающих в спинной мозг от мышечных веретен. Эти аффе­рентные импульсы влияют на возбудимость а-мотонейронов, активность которых определяет рабочее состояние скелетных мышц.

Хвостатое ядро, скорлупа и бледный шар участвуют не только в регуля­ции моторной деятельности, но и в анализе афферентных потоков, в регу­ляции ряда вегетативных функций, в осуществлении сложных форм врож­денного поведения, в механизмах кратковременной памяти, а также в регу­ляции цикла бодрствование—сон. На нейронах базальных ядер происходит взаимо­действие афферентных потоков, поступающих практически от всех сенсор­ных структур, от многих областей коры головного мозга, от таламических, ретикулярных, лимбических и других структур мозга.

Таким образом, широкие афферентные и эфферентные связи базаль­ных ядер между собой, их двусторонние связи с корой большого мозга, осо­бенно с ее моторными зонами, а также связи со структурами промежуточ­ного, среднего и продолговатого мозга обеспечивают широкое взаимодей­ствие возбуждений на нейронах, что является основой высшей интеграции и контроля поведенческих актов.

№ 87 Кора больших полушарий. Методы исследования. Современные представления о локализации функций в коре головного мозга. Особенности деятельности левого и правого полушарии коры головного мозга Роль коры в произвольной регуляции двигательной активности.

Морфофункциональная организация. Вкоре большого мозга различают пять долей: лобную, теменную, затылочную, ви­сочную и островковую, каждая из которых имеет проекционные и ассоциа­тивные области. К проекционным областям коры импульсы возбуждения поступают преимущественно от специфических сенсорных и двигательных ядер таламуса. Основным источником возбуждений, поступающим к ассо­циативным областям коры мозга, являются другие проекционные и ассоци­ативные корковые зоны.

Проекционные и ассоциативные области коры мозга получают сигналы от неспецифических ядер таламуса. Эти неспецифические влияния определяют уровень активного состояния коры большого мозга.

Представления о функциональной организации различных областей коры большого мозга получены при микроэлектродной регистрации био­электрической активности отдельных нейронов.

Особенности проекционных зон. Общим является наличие большого количества специфичес­ких нейронов, которые дают реакции на раздражители строго определен­ной сенсорной модальности. Среди специфических нейронов выделены проекционные нейроны, имеющие однозначную связь с проекционным ре­цептивным периферическим полем, и непроекционные нейроны, возбуж­дающиеся с различных рецептивных полей одной модальности. Например, некоторые ней­роны зрительной области коры большого мозга реагируют на звуковые сти­мулы. Неспецифические нейроны, как правило, больше находятся в ассо­циативных областях коры головного мозга.

Одним из общих механизмов функционирования нейронов различных областей коры мозга является механизм конвергенции возбуждений к от­дельным нервным клеткам.

Мультисенсорная конвергенция. В коре большого мозга особенно многочисленны эффекты мультисенсорной конвергенции, поскольку в кору головного мозга приходят все афферентные потоки возбуждений. Чаше всего эффект мультисенсорной конвергенции дают неспецифические нейроны, что проявляется в реакции отдельных нервных клеток на не­сколько предъявляемых раздражителей (звуковой, световой, соматосенсорный и др.).

Сенсорно-биологическая конвергенция проявляется в схождении к от­дельным нейронам коры большого мозга мотивационных возбуждений, связанных с различными биологическими состояниями организма (боль, голод и др.).

Мультибиологическая конвергенция. Мотивационные состояния организ­ма возникают на основе генерализованных восходящих активирующих влия­ний подкорковых образований на кору большого мозга. Эти восходящие вли­яния, формируемые подкорковыми структурами — гипоталамусом, ретику­лярной формацией, лимбическими образованиями.

Эфферентно-афферентная конвергенция -является одним из механизмов формирования в ЦНС аппарата предвидения результатов поведенческого акта — акцептора ре­зультатов действия.

Два полушария большого мозга объединяются мозолистым телом, во­локна которого связывают идентичные пункты коры большого мозга и обес­печивают единство ее функционирования. У большинства людей доминирующим является левое полушарие, которое обеспечивает функцию речи, контроль за действи­ем правой руки, вербальное, логическое мышление. Такой человек тяготеет к теории, имеет большой запас слов, ему присущи целеустремленность, повы­шенная двигательная активность, способность предвидеть события.

Правое полушарие головного мозга специализировано для восприятия формы и пространства и участвует в интуитивном мышлении. Доминирова­ние правого полушария проявляется у человека в конкретных видах дея­тельности, в способности тонко чувствовать и переживать.

 
   

№ 88 Физиология анализаторов. Понятие о сенсорных системах. Строение анализаторов, свойства периферического, проводникового и центрального отделов анализатора. Роль анализаторов в деятельности функциональных систем организма.

Анализатор – совокупность возбудимых структур центральной и периферической нервной системы, осуществляющих восприятие и анализ воздействий окружающей среды и воздействий, исходящих от самого организма.

Понятие о сенсорных системах:

Системы организма, воспринимающие раздражения из окружающей среды с помощью экстерорецепторов. К ним относятся фоторецепторы, слуховые, тактильные, температурные и хеморецепторы, расположенные на поверхностях тела и в начальных отделах пищеварительного тракта и дыхательных путей.

Все структуры, входящие в состав анализаторов, относятся к афферент­ным, т.е. проводящим возбуждения от периферии в ЦНС. Классические представления Павлова об анализаторе включают в его состав три части: периферический отдел, проводниковый отдел и центральный конец.

Периферический отдел анализаторов включает, как правило, рецепто­ры, хотя в некоторых анализаторах, например зрительном, в этот отдел могут быть включены и первичные афферентные нейроны. Периферичес­кий отдел анализатора является составной частью любого органа чувств, который, помимо рецепторов, включает специальные вспомогательные об­разования для наилучшего восприятия действующего раздражителя. На­пример, глаз как орган зрения, помимо сетчатки (фоторецепторы), включа­ет глазное яблоко, его мышцы, веки и др.

Проводниковый отдел анализаторов включает не только нервные волок­на, непосредственно отходящие от рецепторов, но и все афферентные ней­роны, обеспечивающие первичный анализ и передачу возбуждений в цент­ральный отдел анализатора. Возникающие в рецепторах импульсы возбуж­дения распространяются по проводящим путям в виде электрических по­тенциалов. Во всех нервных волокнах потенциалы являются однотипными по внешнему виду, но в потоке импульсов возбуждения в их своеобразном рисунке — паттерне — закодирована специфическая информация о пара­метрах действующего раздражителя. Анализ этой информации начинается как на уровне первичных афферентных нервных клеток, так и в последую­щих спинальных, стволовых и подкорковых ядрах.

Центральный отдел анализаторов. Различные проводящие афферентные пути через возбуждение соответствующих подкорковых структур в конеч­ном счете приносят импульсы возбуждения в соответствующие области коры большого мозга, которые считаются высшим центральным конечным звеном любого анализатора. Вместе со специфическим афферентным воз­буждением в кору поступает и неспецифическое восходящее возбуждение, которое формируется на уровне подкорковых активирующих структур мозга — ретикулярной формации, гипоталамуса и др.

Передача импульсов от рецепторов по проводящим путям к коре боль­шого мозга осуществляется по цепям нейронов в различных ядрах, распо­ложенных на разных уровнях ЦНС. За счет конвергенции и дивергенции возбуждений в нейронных цепях в этих нервных центрах осуществляются передача и обработка информации.

Роль анализаторов в деятельности функциональных систем:

Физиологические особенности каждого анализатора в отдельности определяются его специфическими структурами передачи воз­буждений от рецепторов в ЦНС, участием в системных процессах це­лого организма. Адекватное поведение живых организмов в окружающей среде не является пассивным отражением воздействующих раздражителей. В большей степени организм настойчиво ищет потребные раздражители и активно к ним стремится, избирательно настраивая по отношению к ним свои анализаторы.

Активное стремление субъектов к раздражителям внешней среды опре­деляется прежде всего их исходными доминирующими потребностями и пропускной способностью к передаче информации соответствующего ана­лизатора. У человека наибольшей пропускной способностью обладает зри­тельный анализатор, который в единицу времени передает в ЦНСболее 70 % информации; 25—28 % информации доставляет в ЦНС слуховой ана­лизатор и 2—5 % информации — остальные анализаторы.

№ 89 Рецепторы. Классификация рецепторов. Основные свойства рецепторов. Закон Вебера-Фехтенера и его анализ.

Рецепторы участвуют впроцессе восприятия и трансформации механической, термической, электромагнитной и химической энергии в нервный сигнал или сложную последовательность мембранных и цитоплазматических процессов.

Существуют различные классификации рецепторов, основанные на их физиологических характеристиках.

Психофизиологическое состояние, связанное с модальностью ощущения, в соответствии с которым выделяют зрительные, слуховые, осязательные, обонятельные, вкусовые, холодовые, тепловые, болевые рецепторы.

Локализация. Большинство сенсорных рецепторов воспринимает раз­дражения из окружающей среды, т.е. являются внешними, или экстерорецепторами. К ним относятся фоторецепторы, слуховые, тактиль­ные, температурные и хеморецепторы, расположенные на поверхности тела и в начальных отделах пищеварительного тракта и дыхательных путей.

Информация о состоянии внутренней среды организма воспринимает­ся интерорецепторами внутренних органов, сосудов, опорно-двигательного аппарата — мышц, сухожилий, костей, суставов.

Структура рецепторов. Рецепторы могут быть представлены свободны­ми нервными окончаниями; окончаниями, покрытыми особой капсулой (инкапсулированные; иметь вид палочек, колбочек, ветвей, волосков. Некоторые рецепторы объединяются в сложно орга­низованные множества — сетчатку глаза, кортиев орган внутреннего уха и др. В результате рецепции действующего на организм раздражения и посту­пающей в мозг на ее основе сигнализации формируется субъективно пере­живаемое ощущение, являющееся источником познания внешнего мира.

Специализация рецепторов. Характерным свойством рецепторов является их высокая генетически детерминированная специализация к восприятию адекватного раздражителя. В соответствии с природой или характером раз­дражения их делят на:

• тактильные рецепторы кожи;

• слуховые, вестибулярные и гравитационные рецепторы внутреннего уха;

• рецепторы опорно-двигательного аппарата (растяжения, суставные, мышц);

• барорецепторы сердца и сосудов;

• хеморецепторы обоняния, вкуса, крове­носных сосудов и тканей;

• фоторецепторы сетчатки — нервные элементы, возбуждаемые электромагнитными волнами дающие ощуще­ния ахроматического — черно-белого (палочки) и хроматического — цветового (колбочки) видения;

• терморецепторы кожи, внутренних органов и ЦНС, реагирующие на изменения температуры окружающей среды и внутренней среды ор­ганизма.

Кроме этого, выделяют рецепторы вибрации, рецепторы волосяных фолликулов, ганглиев.

Модальность. Некоторые (мономодальные) рецепторы приспособлены для восприятия лишь одного вида раздражения, например вкусовые рецеп­торы сладкого; другие (полимодальные) — для восприятия нескольких видов раздражителей, например ноцицепторы кожи, участвующие в фор­мировании болевого ощущения при любом механическом, химическом, температурном повреждающем воздействии.

Дистантные - воспринимают информацию от источ­ника, расположенного на некотором расстоянии от них (зрительные, слу­ховые)

Кон­тактные — при непосредственном соприкосновении с раздражите­лем (тактильные).

Чувствительность. Большинство рецепторов обладает высокой чувст­вительностью по отношению к адекватным раздражителям

Низкопороговые — наиболее чувствительные рецепторы — расположены в коже (тактильные, или осязательные, волоски), в сетчатке глаза (палочки), в обонятельных луковицах.

К высокопороговым — наименее чувствительным — относят­ся рецепторы сетчатки (колбочки), ответственные за хроматическое (цвето­вое) зрение, и ноцицепторы кожи, возбуждающиеся при механическом воз­действии повреждающей интенсивности.

Адаптация — изменение порога чувствительности рецептора при посто­янном действии на него раздражителя.

Закон Вебера-Фехтенера и его анализ:

Для всех органов чувств человека ощущение пропорционально логарифму раздражителя, выраженному в единицах порога ощущения.

Возрастание силы раздражения в геометрической прогрессии стоит в соответствии росту ощущения в арифметической прогрессии. Эта формула измерения ощущений была выведена на основе исследований Вебера, в которых было показано постоянство относительной величины приращения раздражителя, вызывающего ощущение едва заметного различия. При этом был введен собственный постулат о том, что едва заметный прирост ощущения является величиной постоянной и может быть использован в качестве единицы измерения ощущения.

№ 90 Зрительный анализатор. Строение вспомогательного аппарата, оптической системы и рецепторного аппарата зрительного анализатора. Фотохимические и электрические явления в сетчатке. Бинокулярное зрение, его физиологический механизм и значение. Цветное зрение. Методы изучения зрительного анализатора.

Светопреломляющие структуры глаза: роговица, радужная оболочка, хрусталик, камерная влага и стекловидное тело - обеспечивают форми­рование на сетчатке реального, уменьшенного и перевернутого изображения объекта внешнего мира. Радужная оболочка образует зрачок. Светопреломляющая способность хрусталика и диаметр зрачка изменя­ются при сокращении гладких мышц глаза. Зрачковая реакция на свет явля­ется механизмом снижения количества света, падающего на сетчатку при сильном освещении (сужение зрачка), или повышения количества света при слабом освещении за счет увеличения ширины зрачка. Физиологические механизмы опознания зрительных объектов начина­ются с первичной обработки зрительной информации в сетчатке глаза, ко­торая является периферической рецепторной структурой зрительного ана­лизатора. Сетчатка расположена на внутренней поверхности задней сферы глазного яблока и состоит из клеток пигментного эпителия, фоторецепто­ров и четырех слоев, образованных различными нервными клетками.

Фоторецепторы сетчатки: основными зрительными рецепторами, расположенными в сетчатке, являются палочки и колбочки. У человека рецепторный слой сетчатки состоит из 120 млн палочек и 6 млн колбочек. Колбочки воспринимают цвета и функционируют в услови­ях яркой освещенности объектов, в то время как палочки воспринима­ют световые потоки в условиях сумерек.

Фоторецепторы сетчатки со­держат светочувствительные пигменты, которые обесцвечиваются при дей­ствии света. В палочках содержится пигмент родопсин, в колбочках — йодопсин. Процесс преобразования энергии в фоторецепторе начинается с поглощения фотона молекулой пигмента. Конформационное измене­ние молекул пигмента активирует ионы Са2+, которые посредством диффу­зии достигают натриевых каналов, вследствие чего проводимость для Na+ снижается. В результате снижения натриевой проводимости возникает увеличение электроотрицательности внутри фоторецепторной клетки по отношению к внеклеточному пространству.

Сетчатка представляет собой довольно сложную нейронную сеть с горизонтальными и вертикальными связями между фоторецепторами и клетками. Биполярные клетки сетчатки передают сигналы от фоторецепторов в слой ганглиозных клеток и к амакриновым клеткам (вертикальная связь). Горизонтальные и амакриновые клетки участвуют в горизонтальной передаче сигналов между соседними фоторецепторами и ганглиозными клетками.

Зрительные пути: Аксоны ганглиозных клеток дают начало зрительному нерву. Правый и левый зрительные нервы сли­ваются у основания черепа, образуя перекрест, где нервные волокна, иду­щие от внутренних половин обеих сетчаток, пересекаются и переходят на противоположную сторону. Волокна, идущие от наружных половин каждой сетчатки объединяются вместе с перекрещенным пучком аксонов из контралатерального зрительного нерва, образуя зрительный тракт. Зрительный тракт за­канчивается в первичных центрах зрительного анализатора, к которым от­носятся латеральные коленчатые тела, верхние бугорки четверохолмия и претектальная область ствола мозга.

Латеральные коленчатые тела являются первой структурой ЦНС, где происходит переключение импульсов возбуж­дения на пути между сетчаткой и корой большого мозга. Нейроны сетчатки и латерального коленчатого тела производят анализ зрительных стимулов, оценивая их цветовые характеристики, пространственный контраст и среднюю осве­щенность в различных участках поля зрения. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и ле­вого глаза.

Верхние бугорки четверохолмия. Нервные клетки реагируют на движущиеся световые стиму­лы, вклю­чены в механизмы управления целенаправленным движением глаз.

Бинокулярное зрение -механизм регуляции одновременного движения правого и левого глазных яблок, который управляют­ся нейронами, находящимися как в подкорковых структурах, так и в коре большого мозга. Центры бинокулярного зрения находятся в области рети­кулярной формации среднего мозга, в верхних бугорках четверохолмия. Ретикулярная формация среднего мозга является интегрирующим центром, получающим информацию по афферентным путям не только от верхних бугорков четверохолмия, но и от фоторецепторов сетчатки. Ядра глазодвигательных нервов находятся также под влиянием мозжечка. В мозжечке вестибулярные и зрительные сигналы интегрируются с сигналами, отражающими положение головы и глаз.

Цветное зрение: восприятие глазом того или иного тона зависит от длины волны излучения: длинноволновые – красный и оранжевый; средневолновые – желтый и зеленый; коротковолновые – голубой, синий, фиолетовый. За пределами хроматической части спектра располагается невидимое невооруженным глазом ультрафиолетовое излучение. В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазией.

Методы изучения зрительного анализатора:

1. определение остроты зрения;

2. исследование периферического (черно – белого) зрения

3. периметрия (определение поля зрения)

4. исследование бинокулярного зрения.

 

 

 

 

 

№ 91 Слуховой анализатор. Особенности рецепторного проводникового и коркового отделов анализатора. Механизм передачи звуковых колебаний. Методы исследования слухового анализатора.

Максимальная чувствительность слуха человека лежит в области частот от 1000 до 4000 Гц.

В кортиевом органе различают внутренние и наружные волосковые клетки. Фонорецепторы кортиева органа являются вторично чувствующи­ми рецепторами. Афферентные биполярные слуховые нейроны находятся в спиральном ганглии. От каждой клетки спирального ганглия один отросток идет на периферию к волосковым клеткам кортиева органа, а другой в со­ставе слухового нерва направляется в ЦНС.

Звук вызывает колебания эндолимфы улиткового протока попеременно в сторону вестибулярной и в сторону барабанной лестницы. Результатом такого движения является смещение основной и покровной мембраны кортиева органа относительно друг друга. Сгибание цилий является для во­лосковых клеток адекватным стимулом. При этом в волосковых клетках возникает рецепторный потенциал, который вызывает высвобождение ме­диатора. Медиатор действует возбуждающим образом на постсинаптическую мембрану афферентного волокна биполярного нейрона спирального ганглия, что в конечном счете приводит к возникновению потенциалов действия в волокнах слухового нерва.

Отдельные участки улит­ки воспринимают определенные звуковые частоты. Каждое нервное волокно оптимально возбуждается звуком определенной частоты. У основания кортиева органа расположены рецепторные клетки, воспринимающие низкие звуки; у вершины улитки — рецепторы, воспринимающие высокие звуки.

Слуховые пути: п ервичные афферентные волокна распространяются сначала к вент­ральной и дорсальной частям кохлеарного ядра. От вентральной части вентральный тракт направляется к ипси- и контралатеральным оливарным комплексам. Таким образом, нервные клетки в каждом оливарном ком­плексе получают возбуждения от рецепторов правого и левого уха, что обеспечивает сравнительную оценку акустической информации. Дорсаль­ное кохлеарное ядро служит началом дорсального слухового тракта, волок­на которого переходят на противоположную сторону и там образуют синап­сы с нейронами ядра латерального лемниска. После переключения в нем слуховой тракт переключается в двух ядрах — нижнем бугорке четверохол­мия и медиальном коленчатом теле. Из этих образований возбуждение рас­пространяется к центральному концу анализатора — первичной слуховой области височной доли коры большого мозга.

Подкорковые слуховые центры: первичные афферентные слуховые нейроны спирального ганглия воз­буждаются чистыми тонами, т.е. очень простыми звуковыми стимулами. В противоположность этому, чем дальше от улитки по слуховому тракту находятся нейроны, тем более сложные звуковые характеристики их воз­буждают. В нижних бугорках четверохолмия имеются клетки, отвечающие только на частотно модулированные тоны со специфическим направлени­ем и различной модуляцией. Другие клетки нижних бугорков четверохол­мия отвечают на тоны только в том случае, если меняется их интенсивность.

Корковые центры слухового анализатора: нейронные процессы, лежащие в основе оценки звука разной частоты. Одни нейроны отвечают только на начало звукового стимула, другие — только на его окончание.

Методы исследования слухового анализатора:

1. определение остроты слуха разговорной и шепотной речью;

2. исследование камертонами, воздушная проводимость, костная проводимость.

3. исследование бинаурального (пространственного) слуха.

№ 92 Вестибулярный анализатор его строение и функции. Рецепция положения и движения тела. Статические и статокинетические рефлексы.

Вестибулярный анализатор анализирует информацию об ускорениях или замедлениях, возни­кающих в процессе прямолинейного или вращательного движения тела, а также при изменении положения головы в пространстве. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускула­туры. Среди вестибулярных реакций на первом месте находятся статисти­ческие и статокинетические реакции, обеспечивающие сохранение равно­весия при изменении положения тела и его частей или при возникающих ускорениях во время перемещения тела в пространстве. В осуществлении этих реакций участвуют также и проприорецепторы мышц.

Рецепторы статолитовых органов и полукружных каналов:

Вестибулярный орган состоит из статолитового аппарата и трех полу­кружных каналов, расположенных во внутреннем ухе в трех взаимно пер­пендикулярных плоскостях: фронтальной, сагиттальной и горизонтальной. Возбуждающим фактором для вестибулорецепторов, представленных волосковыми клетками, является наклон волосков вследствие смещения отолитовой мембраны при линейных ускорениях. Рецепторные клетки, на­ходящиеся в ампулах, возбуждаются при угловых ускорениях вследствие движения эндолимфы по полукружным каналам. Вестибулорецепторы относятся к вторичночувствующим и связаны через синапсы с афферент­ными волокнами нейронов вестибулярного ганглия, расположенного в височной кости.

Вестибулярные ганглии и ядра:

От вестибулярных ганглиев волокна вестибулярного нерва направляют­ся в продолговатый мозг. Импульсы, приходящие по этим волокнам, посту­пают к нейронам бульбарного вестибулярного комплекса: предверное верх­нее ядро Бехтерева, предверное латеральное ядро Дейтерса, ядро Швальбе. Из вестибулярных ядер возбуждения направляются по вестибулоспинальному тракту к мотонейронам мышц-разгибателей; непосредственно к мотонейронам шейного отдела спинного мозга; к глазодвигательным ядрам и мозжечку; к ретикулярной формации и через таламус к задней централь­ной извилине коры большого мозга.

Функциональные связи между вышеуказанными структурами обеспе­чивают не только поддержание позы человека (сохранение равновесия), но и координацию двигательных актов при выполнении целенаправленной де­ятельности.

Статические и статокинетические рефлексы:

Эти рефлексы способствуют сохранению позы, в их осуществлении большое значение имеет продолговатый и средний мозг.

Статические рефлексы возникают при изменении положения тела или его частей в пространстве: 1) при изменении положения головы в пространстве — это так называемые лабиринтные рефлексы. возникающие в результате раздражения рецепторов вестибулярного аппарата; 2) при изменении положения головы по отношению к туловищу — шейные рефлексы, с проприорецепторов мышц шеи и 3) при нарушении нормальной позы тела — выпрямительные рефлексы с рецепторов кожи, вестибулярного аппарата и сетчатки глаз. Например, при отклонении головы назад повышается тонус мышц-разгибателей спины, а при наклоне вперед — тонус сгибателей (лабиринтный рефлекс). Выпрямительные рефлексы — это последовательные сокращения мышц шеи и туловища которые обеспечивают возвращение тела в вертикальное положение теменем кверху. У человека они проявляются, например, во время ныряния.

Статокинетические рефлексы компенсируют отклонения тела при ускорении или замедлении прямолинейного движения, а также при вращениях. Например, при быстром подъеме усиливается тонус сгибателей, и человек приседает, а при быстром спуске усиливается тонус разгибателей, и человек выпрямляется — это так называемый лифтный рефлекс. При вращении тела реакции противовращения проявляются в отклонении головы, тела и глаз в сторону, противоположную движению. Движение глаз со скоростью вращения тела, но в противоположную сторону и быстрое возвращение в исходное положение — нистагм глаз — обеспечивают сохранение изображения внешнего мира на сетчатке глаз и тем самым зрительную ориентацию.

№ 93 Обонятельный и вкусовой анализатор. Характеристика рецепторного, проводникового и центрального отделов анализаторов.

Общей особенностью обонятельного и вкусового анализаторов является их способность к анализу внешних химических стимулов и формированию соответствующих обонятельных и вкусовых ощущений. Хемочувствительность рецепторов связана с высокой специфичностью и избирательностью по отношению к молекулам некоторых веществ. Анализаторы обладают большей способностью к адаптации. Постоян­но действующий химический стимул достаточно быстро приводит к сниже­нию его восприятия. Наконец, любое пищевое или непищевое вещество, по­падающее в ротовую полость, неизбежно несет с собой и запаховый стимул.

Обонятельные рецепторы расположены главным обра­зом в верхней носовой раковине. Они являются первичными биполяр­ными сенсорными клетками, имеющими два отростка: аксон и дендрит, несущий реснички. Запаховое вещество, попадая в носовую полость, вступает в контакт с мембраной ресничек. Сенсорная клетка может реагировать на несколько пахучих веществ, по которым можно построить спектр ответов одиночной обонятельной клетки. Аксоны этих клеток, направляются в обонятельную луковицу и оканчиваются на первичных дендритах отдельной митральной клетки обонятельной луковицы. Импульсы от обонятельных луковиц также поступают в гиппокамп и через амигдалярный комплекс к вегетативным ядрам гипотала­муса.

Вкусовые рецепторы -специализиро­ванные сенсорные клетки, наряду с опорными и базальными клетками вхо­дящие в состав вкусовых почек. Всего у человека около 2000 вкусовых почек, которые располагаются на вкусовых сосочках языка, имеющих три разные формы: грибовидные, желобоватые и листовидные.

Растворенные в воде вещества, попадающие на поверхность языка, диффундируют через пору вкусовых почек, которые образуют наружные концы сенсорных кле­ток. Сенсорные клетки относятся к вторичночувствующим рецепторам и отвечают на химическое раздражение формированием рецепторного потен­циала. Рецепторный потенциал через синапсы вызывает возбуждение в аф­ферентных волокнах черепных нервов, которые проводят его в мозг.

Проводниковая и центральная часть вкусового анализатора. Афферент­ные волокна, проводящие возбуждения от вкусовых рецепторов, представ­лены нервом — барабанной струной (ветвь лицевого нерва), которая иннервирует переднюю и боковые части языка, а также языкоглоточным нер­вом, иннервирующим заднюю часть языка. Афферентные вкусовые волок­на объединяются в солитарный тракт, который заканчивается в соответст­вующем ядре продолговатого мозга. В нем волокна образуют синапсы с нейронами второго порядка, аксоны которых направляются к вентральному таламусу. Аксоны нейронов третьего порядка проходят через внутреннюю капсулу таламуса и оканчиваются в постцентральной извилине коры большого мозга. В этой области выявлены высокоспецифичные вкусовые нейроны, реагирующие на раздражение ве­ществами, обладающими одним вкусовым качеством.

Основные вкусовые ощущения человека. У человека выявлено четыре четко различимых вкусовых ощущения: сладкое, кислое, соленое и горькое. Эти ощущения связаны со специфической чувствительностью различных участков поверхности языка. Вкус горького ощущается в первую очередь основанием языка, а сладкого — преимущественно кончиком языка. Ощу­щение кислого и соленого возникает при воздействии вкусовых раздражи­телей на боковые поверхности языка.

 
   

№ 94 Архитектоника функциональной системы целенаправленного поведенческого акта. Исполнительные механизмы системной организации поведенческого акта с позиции теории функциональной системы П.K.Анохина и их характеристики.

ОА – обстановочная афферентация; ПА – пусковая афферентация.

Центральная архитектоника поведенческого акта строится деятельнос­тью головного мозга, являясь атрибутом сложных динамических корково-подкорковых взаимоотношений.

Первой, инициативной стадией центральной архитектоники поведен­ческого акта является стадия афферентного синтеза, которая состоит из нескольких компонентов.

Ведущим компонентом является доми­нирующая биологическая мотивация, которая строится на основе нервно-гуморальной сигнализации различными метаболическими потребностями.

Доминирующие биологические мотивации голода, страха, жажды, по­лового возбуждения и др. за счет восходящих активирующих влияний спе­циальных гипоталамических центров избирательно охватывают различные отделы головного мозга, включая кору. Биологические мотивации могут самостоятельно сформировать поведенческий акт. При этом внешние факторы играют роль ключевых, раскрывающих в определенных условиях генетические ме­ханизмы поведенческих актов.

Влияния внешней среды составляют второй компонент афферентного синтеза — обстановочную афферентацию, которая непрерывно поступает в ЦНС при действии разнообразных факторов внешней среды на многочис­ленные экстерорецепторы живых организмов.

Соотношения доминирующей мотивации и обстановки динамич­ны, они строятся по принципу доминанты — в первую очередь удовлетво­ряются биологические или обстановочные воздействия, наиболее значимые для выживания или социальной адаптации.

Третьим компонентом афферентного синтеза является память. Прежде всего это генетическая память, к которой в построении поведения постоян­но адресуются врожденные биологические мотивации. Механизмы памяти при определенных условиях могут самостоятель­но сформировать поведенческий акт или существенно повлиять на его ор­ганизацию.

 

№ 95 Условные и безусловные рефлексы. Черты их сходства и различия, значение для приспособительной деятельности организма. Методики, условия и правила выработки условных рефлексов. Механизмы о6разования временных связей (И.П. Павлов, П.К. Анохин).

Условные и безусловные рефлексы: смотри №102

Правила выработки условных рефлексов:

1. Наличие у животного потребности и соответствующей мотивации. Например, в случае выработки пищевого условного рефлекса живот­ное должно быть голодным. При формировании оборонительного условного рефлекса животное в ответ на повреждающее безусловное воздействие должно испытывать страх.

2. Условный раздражитель должен обязательно подкрепляться безус­ловным, т.е. удовлетворением жизненно важной потребности.

3. Условный раздражитель должен предшествовать подкреплению.

4. Условный раздражитель должен восприниматься животным, т.е. пер­воначально вызывать ориентировочно-исследовательскую деятель­ность. Условный раздражитель должен нести в себе экологическую значимость для животного, восприниматься им. Так, у рыб в качест­ве условных раздражителей более адекватными являются движение воды, изменение ее состава и др. Для высших животных это могут быть световые, звуковые, обонятельные и другие сенсорные раздра­жители.

5. Подкрепление по своей биологической значимости и силе должно быть сильнее условного раздражителя.

6. Условный раздражитель должен неоднократно сочетаться с безуслов­ным подкреплением.

7. При выработке соответствующего условного рефлекса у животных должны отсутствовать конкурирующие мотивации. Например, в слу­чае выработки пищевого условного рефлекса у животного не должен быть переполнен мочевой пузырь или животное не должно подвер­гаться каким-либо повреждающим воздействиям.

8. Наконец, субъект, у которого вырабатываются условные рефлексы, должен быть здоров.

Механизмы образования временных:

Па­влов связывал образование условных рефлексов главным образом с дея­тельностью коры большого мозга, хотя он не отрицал участия в этом про­цессе и ближайших подкорковых образований. Он рассматривал процесс образования условного рефлекса как взаимодействие двух дуг возбуждений: дуги условного и безусловного рефлексов. Между этими дугами, при повторных сочетаниях образуется временная связь.

Павлов обозначил ее «временной», так как при отсутствии под­крепления она быстро разрушается и условный рефлекс исчезает. Времен­ная связь между условным раздражением и подкреплением формируется в коре большого мозга между пунктами (очагами) пред­ставительства условного сигнала и безусловного подкрепления. Образова­нию условнорефлекторной временной связи в коре большого мозга способ­ствуют доминантные отношения. При этом корковый «очаг» безусловного подкрепления, будучи доминантным, притягивает к себе возбуждения, ранее вызванные условным раздражителем. Именно эти свойства способствуют образованию временной связи между пунктами условного и безусловного раздражений коры больших полушарий. Вследствие этого условный раздражитель начи­нает вызывать условнорефлекторный ответ.

№ 96 Условные и безусловные рефлексы. Системная организация врожденного и приобретенного поведения.

Павлов предложил рассматривать два вида поведенчес­ких рефлексов — безусловные и условные. Безусловные рефлексы— врожденные. Безус­ловные рефлексы возникают на основе врожденных рефлекторных дуг. При действии адекватных раздражителей на соответствующие рецепторы безусловные рефлексы проявляются относительно постоянно.

К сложным безусловным рефлексам относятся пищевые, оборонитель­ные, половые, ориентировочно-исследовательские, родительские и др. Следует особо выделить ориентировочно-исследовательскую деятельность— реакцию животных на неожиданные, как правило, новые раздражители. Сложные безусловные рефлексы проявляются в виде специфических поведенческих реакций животных при действии на них соответствующих раздражителей. Наиболее демонстративен в этом плане сложный пищевой рефлекс. Он проявляется при действии пищи на дистантные рецепторы или на рецепторы пищеварительного тракта животного в двигательной, а также секреторной и других вегетативных реакциях — изменении дыхания, дея­тельности сердца и др. Сложный оборонительный рефлекс наряду с двига­тельной реакцией животного включает также изменение ряда вегетативных функций: секреторной деятельности пищеварительных желез, деятельности сердца, дыхания, потоотделения и т.д.

Условный рефлекс — приобре­таются живыми существами в индивидуальной жизни. Они связаны с обу­чением. Это чрезвычайно изменчивая форма рефлекторной деятельности. Ответное действие живот­ного определяется не самим стимулом, а возникает в результате неодно­кратного совпадения того или иного внешнего (условного) стимула с жизненно важной деятельностью (безусловными рефлексами). Тогда ранее относительно индифферентный стимул начинает опережаю­ще вызывать реакцию, характерную для безусловного раздражителя. Иными словами, в выработанном условном рефлексе условный стимул опережающе отражает свойства сочетанного с ним безусловного раздра­жителя.

Непременным условием образования условных рефлексов является подкрепление, когда ранее индифферентный раздражитель неоднократно сочетается с последующим безусловным рефлексом.

Другой принцип, характеризующий условнорефлекторную деятельность – принцип сигнальности. Ответная реакция организма при действии не него раздражитеоя несет в себе свойства будущего безусловного воздействия. Условный раздражитель сигнализирует о последующие безусловном рефлексе.

Условные рефлексы классифицируют:

- по названию условных раздражителей — световые, звуковые, обоня­тельные, тактильные;

- по названию анализатора, воспринимающего условный раздражи­тель,— зрительные, слуховые, кожные;

- по характеру подкрепления — пищевые, оборонительные, поло­вые;

- по методу выработки — коротко- и длительноотставленные, запаздывательные, следовые и совпадающие.

При короткоотставленных условных рефлексах интервал между услов­ным раздражителем и подкреплением обычно равен 10—20 с и не превы­шает 30 с. В длительноотставленных условных рефлексах этот интервал со­ставляет более 30 с. В запаздывательных условных рефлексах интервал меж­ду условным сигналом и подкреплением равен 3 мин. В следовых условных рефлексах подкрепление предоставляется животному после прекращения действия условного раздражителя. При совпадающих условных рефлексах условный сигнал и подкрепление предоставляются животному одновре­менно.

 
     

 


Дата добавления: 2015-08-28; просмотров: 58 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.054 сек.)







<== предыдущая лекция | следующая лекция ==>