|
Сложные суждения устанавливают связь между простыми суждениями. (С одним S и несколькими Р, с несколькими и одним Р, с несколькими S и несколькими Р). Виды: I. Соединительные (коньюнктивные) суждения. Связка «и» (может быть, а, но, а также, как и,хотя, однако, несмотря на, однеовременно). р/\q II. Разделительные (дизъюнктивные) суждения. Связка «или». Связка «или» в двух значениях: р v q А) соединительно-разделительное значение – то есть и то, и другое. Это нестрогая дизъюнкция; Б) разделительное значение – либо то, либо это. III. Условные (импликативные) суждения. Связка «если…, то…». Первое суждение – антицедент (лат. – предшествующее), второе – консеквент (лат. – последующее). р→q. Антецедент выполняет роль логического основания, обуславливающего принятие в консеквенте определенного следствия. Это основание достаточно, но не необходимо. IV. Эквивалентные суждения (двойная импликация). Связка «если и только если…, то…». р→q Здесь истинность аницедента – и достаточное, и необходимое условие истинности консеквента. И наоборот. Понятие достаточного и необходимого условия. Условие является необходимым, если при его отсутствии явление не имеет место. Условие является достаточным, если его наличие влечёт данное явление. Необходимое и достаточное условие не совпадают с друг другом. (Для того, чтобы поступить в ВУЗ необходимо сдать ЕГЭ – необходимое условие, набрать достаточную сумму баллов – достаточное). Таблицы истинности: I. Соединительные (коньюнктивные) суждения.
Истинно, когда оба суждения истинны. Ложно, если хоть одно суждение ложно.
| II. Разделительные (дизъюнктивные) суждения.
А) нестрогая дизъюнкция:
Ложно, если оба суждения ложны.
Б) строгая дизъюнкция:
Истинно, если одно суждение истинно, а другое ложно.
III. Условные (импликативные) суждения.
Ложно в одном случае: когда антицедент – истинное суждение, а консеквент – ложное.
IV. Эквивалентные суждения (двойная импликация).
Истинно, когда оба истинные или оба ложные |
Импликация. В данном случае эти два суждения связаны таким образом, что из первого вытекает второе (если вещество – металл, то оно обязательно электропроводно), однако из второго не вытекает первое (если вещество электропроводно, то это вовсе не означает, что оно является металлом). Первая часть импликации называется основанием, а вторая – следствием; из основания вытекает следствие, но из следствия не вытекает основание. Формулу импликации: a b, можно прочитать так: «если a, то обязательно b, но если b, то не обязательно a».
Эквиваленция. В данном случае два суждения связаны так, что из первого вытекает второе, а из второго – первое: если число чётное, то оно обязательно делится без остатка на 2, а если число делится без остатка на 2, то оно обязательно чётное. Понятно, что в эквиваленции, в отличие от импликации, не может быть ни основания, ни следствия, т. к. две её части являются равнозначными суждениями.
Кобзарь. Следующим логическим союзом, формирующим сложное суждение, является условный союз, часто называемый импликацией, символическое изображение которого - -->. Образованное с его помощью сложное условное суждение состоит из двух элементов: основания (простое суждение, которое заключено между союзом "если" и частицей "то") и следствия (простое суждение, следующее после частицы "то"). Правда, такое название элементов применимо для условного суждения, союз которого по природе своей, генезису и истории отражает естественные, причинно-следственные зависимости, зависимости по смыслу; в импликации же эти элементы называются по-другому, и это потому, что импликация есть связь между элементами (простыми суждениями), допускающими смысловую независимость их между собой, т.е. антецедент (простое суждение перед логическим союзом) и консеквент (простое суждение после союза) могут по смыслу совершенно не зависеть друг от друга: "Если в огороде бузина, то в Киеве дядько", "Если рак - рыба, то белый медведь не хищник", "Если любовь зла, то асфальт мокрый" и т.п. Условное суждение записывается в виде формулы - "В -->С". Однако, по своим истинностным характеристикам условное суждение и импликация не во всем тождественны друг другу.
Несмотря на их структурное сходство и даже одинаковость выражения логического союза, все таки отождествлять их не стоит, так как импликация отражает более произвольный характер связи между элементами ее по сравнению со связью основания и следствия условного суждения. Эти связи отражают разные зависимости, обладают разными свойствами. Условное суждение по природе своей отражает природные, естественные связи и причинно-следственные зависимости между предметами (явлениями, процессами) и их свойствами. Исследуемая в современной формальной (математической, символической) логике импликация есть связь, не предполагающая смысловой зависимости между своими составляющими. Вот эта более свободная, произвольная, обобщенная и в чем-то более искусственная связь антецедента и консеквента в импликации, отличает ее от смысловой связи основания и следствия в условном суждении. Посему и истинностные зависимости между элементами условного суждения и импликации несколько отличны.
Между двумя элементами условного суждения (основанием и следствием) логика устанавливает две закономерные зависимости. Первая и жесткая зависимость, отражающая причинно-следственную связь, показывает истинностную зависимость следствия от основания условного суждения. При истинности основания условного суждения следствие его будет обязательно истинным. Так, в суждении "Если растение лишено кислорода, то оно погибает" при истинности его основания (растение лишено кислорода) следствие его (оно погибает) будет безусловно истинным. Но если основание этого условного суждения ложно, то его следствие может быть как истинным, так и ложным, т.е. неопределенным. Потому что, опираясь только на имеющуюся в основании условного суждения информацию, сказать определенно, каким же будет следствие этого суждения, не представляется возможным. Нам ведь ничего не известно об остальном: в нашем случае — о земле, воде, солнце, тепле и пр.
При истинности следствия условного суждения основание его тоже будет неопределенным, так как исходной информации недостаточно. Нам известно лишь то, что растение погибает. Известно это и только это. Можно ли, опираясь на такое скудное знание, категорично что-то утверждать об основании нашего суждения, т.е. говорить о причине гибели растения? Конечно же, нет. Из собственного и коллективного опыта нам известно, что растение может погибнуть от самых разных и многих причин, а в нашем суждении названа лишь одна, что недостаточно для точного и однозначного, определенного заключения. По истинности следствия условного суждения нельзя заключать об истинности его основания. Но вот когда следствие условного суждения является ложным, тогда неизбежно будет ложно и само основание. Это — закон для данной структуры. Если следствие нашего суждения - «растение погибает» - является в действительности ложным, то и его основание - «растение лишено кислорода» - будет обязательно ложным. Эти зависимости можно представить в виде таблицы, которую будет удобно сопоставить с таблицей истинности для импликации:
Если В, то С,
при и --> и, а
при л -->?, и наоборот, при
? <-- и
л <-- л
В данной таблице стрелка всего лишь указывает направление, мысленный переход от одного элемента условного суждения к другому, но не логический союз.
Таблица истинности для импликативного логического союза (для импликации) будет несколько иной:
В С В --> C
и и и
л и и
и л л
л л и
Понятно, что при отсутствии смысловой зависимости между элементами импликации, истинностные характеристики последней носят в отдельных случаях более произвольный, чем в условном суждении, в общем-то постулируемый, конвенциональный характер. Однако, таким образом заданные истинностные значения импликации позволяют ей преодолевать те неопределенности, которые встречаются в условном суждении, и которые не позволяют в некоторых случаях точно разрешать ситуацию. Импликация даже при, казалось бы, парадоксальных случаях, например, при ложности как антецедента, так и консеквента, как логическая связь признается истинной; и такая логическая связь "работает" в системах исчислений, в системах искусственных языков. Без этой связи невозможно создание языков машин, всей современной "интеллектуальной" техники. Методологическое значение данной логической связи очень велико.
Традиционная формальная логика рассматривает структуру сложных суждений, как такую мыслительную конструкцию, элементы которой связаны между собой по смыслу. Правда, она не делает отношения между сложными суждениями предметом своего обстоятельного исследования. Можно в качестве исключения говорить лишь о рассматриваемых традиционной логикой отношениях и связях между условным и разделительным суждениями, но традиционная логика рассматривает их в качестве элементов более сложной формы мысли — умозаключения, как условно-разделительный силлогизм.
Отношения между четырьмя видами сложных суждений - предмет современной формальной (математической, или символической) логики. Она анализирует и устанавливает закономерные зависимости между сложными суждениями и даже имеет целый список так называемых формул равносильностей, когда сложные суждения с одним логическим союзом по истинностному своему значению тождественны другим сложным суждениям с другими логическими союзами. То есть речь идет о взаимозаменяемости логических союзов. Так, эквивалентность может быть выражена импликацией, импликация - дизъюнкцией, дизъюнкция - конъюнкцией, и наоборот. Например: (В/\С) равносильно «не-(В-->не-C)» и равносильно «не-(не-Вv не-С)»; (ВvС) равносильно не-(не-В /\ не-С); (В-->C) равносильно (не-ВvC); (В<-->C) равносильно ((не-ВvС) /\ (не-СvD)). (См. Формальная логика. Л., 1977. С. 221-231).
Дата добавления: 2015-08-28; просмотров: 38 | Нарушение авторских прав
<== предыдущая лекция | | | следующая лекция ==> |
Сложные разветвляющиеся алгоритмы | | | Все необходимые инструменты, рассмотренные в уроке, находятся на верхней панели Corel DRAW, вернее появляются там при выделении нескольких объектов. |