Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Понятия, ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации. 4 страница



Соматические клетки растений и животных, как правило, содержат двойное (диплоидное) число хромосом (2 n); одна из каждой пары гомологичных хромосом происходит от материнского, а другая — от отцовского организмов. В отличие от соматических, половые клетки имеют уменьшенное исходное (гаплоидное) число хромосом (n). В гаплоидных клетках каждая хромосома единична, не имеет парной себе гомологичной. Гаплоидное число хромосом в клетках организмов одного вида называется основным, или базовым, а совокупность генов, заключённую в таком гаплоидном наборе, — геномом. Гаплоидное число хромосом в половых клетках возникает вследствие редукции (уменьшения) вдвое числа хромосом в мейозе, а диплоидное число восстанавливается при оплодотворении. (Довольно часто у растений в диплоидной клетке бывают т. н. В-хромосомы, добавочные к какой-либо из хромосом. Роль их мало изучена, хотя у кукурузы, например, всегда имеются такие хромосомы.) Число хромосом у различных видов растений весьма разнообразно. Так, один из видов папоротника (Ophioglosum reticulata) имеет в диплоидном наборе 1260 хромосом, а у самого филогенетически развитого семейства сложноцветных вид Haplopappus gracilis имеет всего 2 хромосомы в гаплоидном наборе.

При П. наблюдаются отклонения от диплоидного числа хромосом в соматических клетках и от гаплоидного — в половых. При П. могут возникать клетки, в которых каждая хромосома представлена трижды (3 n) — триплоидные, четырежды (4 n) — тетраплоидные, пять раз (5 n) — пентаплоидные и т.д. Организмы с соответственным кратным увеличением наборов хромосом — плоидности — в клетках называются триплоидами, тетраплоидами, пентаплоидами и т.д. или в целом — полиплоидами.

Возникновение клеток с числом хромосом 3-, 4-, 5-кратным (и более) гаплоидному набору, называется геномными мутациями, а получаемые формы — эуплоидными. Наряду с эуплоидией часто встречается анеуплоидия, когда появляются клетки с изменением числа отдельных хромосом в геноме (например, у сахарного тростника, пшенично-ржаных гибридов и др.). Различают автополиплоидию, и аллополиплоидию.

Автополиплоидия (от авто... и полиплоидия), кратное увеличение в клетках организма исходного, характерного для вида набора хромосом. А. имеет значение в онтогенезе растений и животных, а также в филогенезе (видообразовании), главным образом у растений; у животных же — при партеногенезе. Вызывая А. искусственно (высокой температурой, излучениями, химическими соединениями), удалось получить автополиплоидные формы и сорта гречихи, ржи, сахарной свёклы и др.



Аллополиплоидия (от греч. állos — другой и polýploos — многократный),

соединение в клетках организма наборов хромосом от разных видов или родов. Т. о., А. — сочетание полиплоидии с гибридизацией. Различают аллодиплоиды (совмещающие два генома от разных видов), аллотетраплоиды (амфидиплоиды), сесквиполиплоиды (с полуторным набором хромосом) и др. А. имеет значение в процессах видообразования

Амфидиплоиды (от греч. amphí — с обеих сторон, diplóos — двойной и éidos — вид), аллотетраплоиды, гибридные организмы, в клетках которых сочетаются полные диплоидные наборы хромосом двух разных видов. А. — частный случай аллополиплоидии. Имеют значение в видообразовании, используются в ресинтезе (воссоздании) старых видов (например, экспериментально в результате скрещивания терна Prunus spinosa с алычой P. divaricata получена культурная слива P. domestica) и в создании новых форм и даже видов растений. Получены, например, А. между рожью и пшеницей — тритикале, пшеницей и пыреем — пшенично-пырейные гибриды, капустой и редькой — рафанобрассика; среди животных известны А. у шелкопрядов.

П. имела огромное значение в эволюции дикорастущих и культурных растений (полагают, что около трети всех видов растений возникли за счёт П., хотя в некоторых группах, например у хвойных, грибов, это явление наблюдается редко), а также некоторых (преимущественно партеногенетических) групп животных. Доказательством роли П. в эволюции служат т. н. полиплоидные ряды, когда виды одного рода или семейства образуют эуплоидный ряд с увеличением числа хромосом, кратным основному гаплоидному (например, пшеница Triticum monococcum имеет 2n = 14 хромосом, Tr. turgidum и др. — 4n = 28, Tr. aestivum и др. —6n = 42). Полиплоидный ряд видов рода паслён (Solanum) представлен рядом форм с 12, 24, 36, 48, 60, 72 хромосомами. Среди партеногенетически размножающихся животных полиплоидные виды не менее часты, чем среди апомиктических растений (см. Апомиксис, Партеногенез). Советскому учёному Б. Л. Астаурову впервые удалось искусственно получить плодовитую полиплоидную форму (тетраплоид) из гибридов двух видов шелкопряда: Bombyx mori и В. mandarina. На основании этих работ им предложена гипотеза непрямого (через партеногенез и гибридизацию) происхождения раздельнополых полиплоидных видов животных в природе.

37.Геномные изменения: анеуплоидия. Анеуплоидия: нуллисомики, моносомики,

нолисомики, их использование и генетическом анализе. Особенности мейоза и

образования гамет у анеуплоидов, их жизнеспособность и плодовитость.

Анеуплоидия — некратное гаплоидному уменьшение или увеличение числа хромосом (2n+1, 2n+2, и т. д.). Анеуплоидия не только приводит к изменению характера наследования признаков, но и вызывает определенное изменен в фенотипе.

Разновидности анеуплоидии: а) трисомия - три гомологичных хромосомы в кариотипе. Так, например, у человека описана трисомия по всем хромосомам набора. Иногда трисомия бывает полной, т. повторены три хромосомы одного номера, а иногда — частично когда повторены две полные, а третья хромосома — частично. Такой случай трисомии встречается особенно часто по крупны хромосомам генома. Это указывает на генетическую неравноценность отдельных хромосом. Возникает частичная трисомия главным образом за счет наличия инверсий или дупликаций геноме. Фенотипически трисомия по каждой хромосоме характеризуется определенным набором симптомов, но всегда это бывают нарушения психомоторного развития с совокупностью множественных пороков; б) моносомия в наборе одна из пары гомологичных хромосом, например, при синдроме Шерешевского-Тернера (моносомия Х). Моносомии по первым крупным парам хромосом являются для человека летальными мутациями; в) нулисомия- отсутствие пары хромосом (летальная мутация).

Анеуплоиды описаны у пшеницы, кукурузы, табака, хлопчатника, мыши, кошки, крупного рогатого скота и у многих других. Как правило, они менее жизнеспособны, имеют меньшую продолжительность жизни, менее плодовиты, чем диплоиды, и часть отличаются от последних морфологическими признаками. Известно, что анеуплоидия у растений менее сказывается на жизнеспособности, чем у животных.

У анеуплоидов образуются как нормальные, гаплоидные гаметы, так и анеуплоидные. При этом у растений в оплодотворении принимает участие только пыльца с нормальным, гаплоидным набором хромосом, а зародышевые мешки функционируют независимо от числа хромосом, поэтому характер расщеплении в потомстве анеуплоидов резко отличается от расщепления у диплоидов. Например, если растение клевера — трисомик по хромосоме, несущей ген красной (А) или белой (а) окраски цвет ков, то при генотипе ААа в случае самоопыления получится расщепление 17:1. Это объясняется тем, что функционирующая пыльца образуется двух сортов — А и а, но пыльцевых зерен с геном А в 2 раза больше, чем с а. Яйцеклетки образуются четырех сортов (А, а, АА, Аа) в следующей пропорции: 1АА:1а:2А:2Аа. По решетке Пеннета легко получить соотношение 17:1.

В настоящее время исследование анеуплоидии у растений приобретает важное значение в связи с выяснением роли каждой хромосомы в генотипе. В будущем это поможет экспериментальному синтезу определенных генотипов. Анеуплоидия играет огромную роль в эволюции генотипа и имеет большое значение для изучения происхождения культурных растений.

38.Хромосомные перестройки. Внутри- и межхромосомные перестройки. Особенности

мейоза при различных типах перестроек.

Хромосомные мутации характер-я изменениями положения участков, размеров и организациями хромосом. В такие перестройки м б вовлечены участки одной хромосомы или разных, негомологичных. Хромосомные перестройки возникают в результате образовавшихся при мутагенном воздействии разрывов хромосом, последующей утраты некоторых фрагментов и воссоединения частей хромосомы в ином порядке по сравнению с нормальной хромосомой. Используют в диагностике наследственных заболеваний.

Среди внутрихромосомных перстроек выделяют: дупликации – удвоение, один из участков хромосомы представлен более одного раза; делеции – или нехватка, утрачен внутренний участок хромосомы, теломера не затронута; инверсии – повороты участка хромосомы на 1800. Инвертированный участок м вкл или не вкл центромеру. Из 4 хромосом образовавшихся в процессе мейоза, в случае парацентрической инверсии у 1 хромосомы отсутствует центромера, др хромосома содержит 2 центромеры, 2 хромосомы отсаются нормальными – их кроссинговер не затронул. В случае перецентрической инверсии 2 хромосомы также остаются незатронутыми, в 3-й – некоторые гены утрачены., в 4-й – дуплицированны. Гетерозиготные по инверсиям организмы часто бывают стерильными, т к часть образующихся гамет не способна к образованию жизнеспособных зигот.

Межхромосомные перестройки –транслокации, при кот участок хромосомы перемещается на другое место негомологичной хромосомы, попадая при этом в другую группу сцепления. Выделяют несколько типов транслокаций: реципрокные – взаимный обмен участками негомологичных хромосом; нереципрокные – участок хромосомы изменяет свое положение или включается в др хромосому без взаимного обмена; децентрические – слияние 2 и более фрагментов негомологичных хромосом, несущих участки с центромерами; центричекие – происходят при слиянии 2 центромеров негомологичных акроцентрических хромосом, с образование 1 мета- или субметацентрической хромосомы.

39.Классификация генных мутаций. Общая характеристика молекулярной природы

возникновения генных мутаций: замена оснований, выпадение или вставка оснований

(нонсенс, миссенс и фрэймшифт типа).

Генные (точковые) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть(делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно - клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидныз цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую(вместо глутамина - валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно - клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривание тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.

Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена первого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, "Молчащая мутация"- изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокилотная последовательность белка не меняется.

Типы точковых мутаций

Точковые мутации можно разделить на несколько типов в зависимости от характера молекулярного изменения в гене. Здесь мы кратко опишем четыре типа таких мутаций (Wallace, 1981*)

1. Missense-мутация. К этому типу принадлежит мутация, описанная в предыдущем разделе. В одном из триплетов происходит замена одного основания (например, ЦТТ→ГТТ), в результате чего измененный триплет кодирует аминокислоту, отличную от той, которую кодировал прежний триплет.

2. Мутация со сдвигом рамки. Если в последовательность ДНК включается новое основание или пара оснований, то все лежащие за ними триплеты изменяются, что влечет за собой изменение синтезируемого полипептида. Возьмем, например, последовательность АТТ—ТАГ—ЦГА, перед которой включилось основание Т. В результате получится новая последовательность ТАТ—ТТА—ГЦГ—А… К такому же результату приведёт утрата одного из имеющихся оснований.

3. Nonsense-мутация. В результате замены одного основания возникает новый триплет, представляющий собой терминирующий кодон. В генетическом коде имеется три таких триплета. При такой замене синтез полипептидной цепи прекращается в новой (т. е. другой) точке, и соответственно эта цепь отличается своим свойствам от полипептида, который синтез прежде.

4. Синонимическая missence-мутация. Генетический код обладает значительной избыточностью: два или несколько его триплетов кодируют одну и ту же аминокислоту. Поэтому можно ожидать, что в некоторых случаях при замене оснований один триплет заменяется другим — синонимическим, кодирующим ту же аминокислоту. В этом случае, вследствие избыточности кода мы имеем дело с молекулярным изменением в пределах данного гена, которое не вызывает фенотипического эффекта. Такие синонимические мутации, вероятно, довольно обычны.

 

 

42.Представление школы Моргана о строении и функции гена. Функциональный и

рекомбинационный критерии аллелизма. Множественный аллелизм.

В 1902 г. У. Сеттон, а впоследствии Т. Морган сопоставили менделевские законы наследственности с закономерностями поведения хромосом и обнаружили параллелизм между характером наследования генов и распределением хромосом в мейозе. На основании этого они сформулировали хромосомную теорию наследственности.

В целом представления школы Т. Х. Моргана можно кратко представить следующим образом:

ген имеет основные свойства хромосом (способность к редупликации, к закономерному распределению в митозе и мейозе),

занимает определенный участок (локус) хромосомы,

является единицей мутации (т. е. изменяется как целое),

единицей рекомбинации (т. е. кроссинговера никогда не наблюдали в пределах гена),

единицей функции (т. е. все мутации одного гена нарушают одну и ту же функцию).

Ген может существовать в двух или нескольких аллельных состояниях. Аллели оказывают различное действие на развитие и фенотипическое выражение признака.

Аллелями называют различные состояния одного гена. Как известно, в результате мутирования ген может находиться более чем в двух различных состояниях (явление множественного аллелизма).

Поэтому при получении серии мутаций с похожим фенотипом для определения того, затронула мутация один и тот же ген или разные, Морган предложил два теста: функциональный и рекомбинационный.

Функциональный критерий основывается на том, что при скрещивании двух мутантов возникает дигетерозигота, имеющая дикий фенотип в силу доминирования нормальных аллелей каждого из генов (мутации комплементарны друг другу). Если скрещиваемые мутанты несут в дигетерозиготе аллельные мутации, то в компаунде дикий тип не появляется, так как оба аллеля одного и того же гена в разных хромосомах имеют мутационные изменения, или, по-другому, мутации не комплементарны. При этом мутации не должны разделяться кроссинговером. (схемка!!!)

Например, при скрещивании двух мутантных норок, белой и пастелевой, все гибриды имеют коричневую окраску, т. е. дикий фенотип. При скрещивании белой норки с другой мутантной формой - платиновой - все гибриды имеют платиновую окраску, т. е. мутантный фенотип. Следовательно, в первом случае наблюдается комплементарность, т.е. неаллельность; а во втором — отсутствие комплементарности, т.е. аллельность.

В основу рекомбинационного теста было положено представление, что только мутации в разных генах способны рекомбинировать между собой. Исследователи школы Моргана считали мутации аллельными, если соблюдались функциональный (гетерозигота - мутантный фенотип) и рекомбинационный, (рекомбинаций нет) критерии. В связи с изменением представлений о структуре гена уточнялись и критерии аллелизма.

 

Один и тот же ген может изменяться в несколько состояний; иногда таких соетояний бывает несколько десятков и даже сотен. Ген А может мутировать в состояние а1, а2, а3,... аn. Ряд состояний одного и того же гена называют серией множественных аллелей, а само явление — множественным аллелизмом,

Изучение серий множественных аллелей показало, что любая аллель такой серии может возникать мутационно непосредственно от аллели дикого типа или любого другого члена данной серии, а каждый из членов серии, по-видимому, имеет свою характерную частоту мутирования.

Наследование членов серии множественных аллелей подчиняется менделевским закономерностям. При этом, в отличие от генов, для которых известно только два состояния, сочетание двух разных членов серии множественных аллелей в гетерозиготе называют компаундом.

Серии множественных аллелей обнаружены у крупного рогатого скота, кроликов, мышей, морских свинок, дрозофилы, а также у кукурузы, табака, гороха и др. У человека известна серия аллелей: IA, IB, I0 которая определяет полиморфизм по группам крови:

Существование серии множественных аллелей локуса, определяющего самостерильность у растений, является тем механизмом, который в ряде случаев обеспечивает перекрестное оплодотворение. Так, было показано, что у табака, клевера и других растений на рыльцах прорастает только пыльца, несущая аллель, отличную от аллелей, имеющихся в генотипе рыльца по локусу самостерильности.

Распространенность множественного аллелизма среди животных, растений и микроорганизмов и наличие его у человека могла быть обусловлена тем, что это явление увеличивает резерв мутационной изменчивости, а потому имеет приспособительное значение в эволюции.

 

77.Особенности человека как объекта генетических исследований. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный.

Система опытов с целью разложения признаков организма на отдельные элементы и изучение соответствующих им генов носит название «генетический анализ». Основной принцип генетического анализа - принцип анализа единичных признаков, согласно которому на первом этапе рассматриваются поколения по каждому признаку отдельно, независимо от других признаков. Задачи генетического анализа: установление гена; изучение его свойств путем изучения его действия на признаки в различных комбинациях с другими генами; установление сцепления гена с другими генами, ранее установленными; определение расположения гена среди других, сцепленных с ним. Объект генетического анализа – физиология гена: структура, воспроизведение, механизм действия и изменчивость.

Гибрид.метод – это анализ хар-ра наследования признаков с помощью системы скрещивания, суть к-ых состоит в получ-й гибридов и анализе их потомков в ряду поколении. Эта схема гибрид.анализа вкл-т: подбор материала для получения гибридов, скрещиваний между собой и анализа след.поколении.

Гибрид. метод Г. Менделя имеет след-ие особенности:

1) анализ нач-ся со скрещивания гомозиготных особей («чистые линии»);

2) анализ-ются отдельные альтернативные (взаимоисключающие) признаки;

3) проводится точный количественный учет потомков с различной комбинацией признаков (исп-ся математические методы);

4) наследование анализируемых признаков прослеживается в ряду поколений.

Мендель также предложил систему записей скрещивания. В наст.время гибрид.анализ яв-ся частью ген.анализа, позволяющего опр-ть хар-р наследования изучаемого признака, выяс-ть локализацию генов.

Генеалогический метод - относящийся к числу основных в генетике человека, этот метод опирается на генеалогию — учение о родословных. Его сутью является составление родословной и последующий ее анализ. Впервые такой подход был предложен английским ученым Ф. Гальтоном в 1865 г.

Близнецовый метод - это метод изучения генетических закономерностей на близнецах. Впервые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает возможность определить вклад генетических (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкрет ных признаков или заболеваний у человека.

Популяционно-статистический метод - одним из важных направлений в современной генетике является популяционная генетика. Она изучает генетическую структуру популяций, их генофонд, взаимодействие факторов, обусловливающих постоянство и изменение генетической структуры популяций.

Цитогенетический метод - основа метода — микроскопическое изучение хромосом человека. Цитогенетические исследования стали широко использоваться с начала 20-х гг. ХХ в. для изучения морфологии хромосом человека, подсчета хромосом, культивирования лейкоцитов для получения метафазных пластинок.

Биохимический метод - причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций. Использование современных биохимических методов (электрофореза, хроматографии, спектроскопии и др.) позволяют определять любые метаболиты, специфические для конкретной наследственной болезни.

Мутационный метод - выявление эффекта мутации, оценка мутагенной опасности отдельных факторов и окружающей среды. Поиск неизвестных мутаций и выявление известных мутаций - это разные диагностические задачи. Крупные мутации легче обнаружить. Блоттинг по Саузерну и полимеразная цепная реакция позволяют выявить увеличение числа тринуклеотидных повторов, делеции, вставки и другие перестройки ДНК. Также мутационный метод позволяет выявить любую мутацию, существенно снижающую уровень мРНК.

 


Дата добавления: 2015-11-04; просмотров: 45 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.029 сек.)







<== предыдущая лекция | следующая лекция ==>