Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1 вопрос. Виды механического движения. Скорость и ускорение тела при равноускоренном прямолинейном движении. 2 страница



Специальные спутники помогают морским судам и самолетам определять свои координаты. Исследования поверхности материков и океанов, выполняемые космонавтами при полетах на орбитальных станциях, позволяют оценить и уточнить природные ресурсы в различных районах земного шара.

 

2 вопрос. Электрический ток в вакууме. Термоэлектронная эмиссия. Применение вакуумных приборов.

Вакуум - среда, которая содержит газ при давлении значительно ниже атмосферного.

Для создания тока в вакууме необходим специальный источник заряженных частиц. Действие такого источника обычно основано на термоэлектронной эмиссии.

Термоэлектронная эмиссия - явление вырывания электронов из металла при высокой температуре.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

При подключении электродов к источнику тока между ними возникает электрическое поле.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами – вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Билет 7.

1 вопрос. Потенциальная и кинетическая энергия. Закон сохранения энергии в механических процессах.

Потенциальной энергией называется энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое над Землей, потому что энергия тела зависит от взаимного положения его и Земли и их взаимного притяжения. Потенциальная энергия тела, лежащего на Земле, равна нулю. А потенциальная энергия этого тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Огромной потенциальной энергией обладает речная вода, удерживаемая плотиной. Падая вниз, она совершает работу, приводя в движение мощные турбины электростанций.

E потенциальная = mgh

Кинетической энергией называется энергия, которой обладает тело вследствие своего движения.



Кинетическая энергия тела зависит от его скорости и массы. Например, чем больше скорость падения воды в реке и чем больше масса этой воды, тем сильнее будут вращаться турбины электростанций.

mv2
E кинетическая = ——
2

 

В природе, технике, быту один вид механической энергии обычно превращается в другой: потенциальная в кинетическую и кинетическая в потенциальную.

Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.

Закон сохранения энергии в механических процессах.

Закон сохранения и превращения энергии является одним из фундаментальных законов природы, справедливым как для систем макроскопических тел, так и для систем элементарных частиц. Он является выражением вечности и неуничтожимости движения в природе, которое лишь переходит из одной формы в другую.
В замкнутой системе тел, силы взаимодействия между которыми консервативны (потенциальны), отсутствуют взаимные превращения механической энергии в другие виды энергии. Такие системы называются замкнутыми консервативными и для них справедлив закон сохранения энергии в механике: механическая энергия замкнутой консервативной системы не изменяется в процессе ее движения.

Энергия не создается и не уничтожается, а только превращается из одной формы в другую.

Величину, равную сумме кинетической и потенциальной энергий системы, называют механической энергией системы.

Классическим примером этого утверждения являются пружинный или математический маятники с пренебрежимо малым затуханием. В случае пружинного маятника в процессе колебаний потенциальная энергия деформированной пружины (имеющая максимум в крайних положениях груза) переходит в кинетическую энергию груза (достигающую максимума в момент прохождения грузом положения равновесия) и обратно. В случае математического маятника аналогично ведёт себя потенциальная энергия груза в поле силы тяжести.

2 вопрос. Электрический ток в полупроводниках. Собственная и примесная проводимость полупроводников.

Электрический ток в полупроводниках.

Полупроводник – материал, в котором удельное сопротивление с увеличением температуры не растет, как у металлов, а, наоборот, резко уменьшается.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью.

Проводимость проводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью.

Дырка – это вакантное место с недостающим электроном, которое образуется в результате разрыва связи между атомами полупроводника.

Дырки, как и электроны, носители заряда, поэтому полупроводники обладают не только электронной, но и дырочной проводимостью.

При наличии примесей наряду с собственной проводимостью полупроводников возникает примесная проводимость.

Примеси, легко отдающие электроны и, следовательно, увеличивающие число свободных электронов, называют донорными примесями.

В полупроводнике n-типа электроны являются основными носителями заряда, а дырки – неосновными.

Акцепторные примеси создают дырки: образуется полупроводник p-типа (positive – положительный).

 

 

Билет 8.

1 вопрос. Идеальный газ. Уравнение идеального газа. Газовые законы.

Основные отличия идеального газа от реального:

1) Частицы идеального газа – сферические тела очень малых размеров, практически материальные точки.

2) Между частицами отсутствует силы межмолекулярного взаимодействия.

3) Соударение частиц является абсолютно упругим.

Идеального газа в природе не существует.

Качественное объяснение давления газа заключается в том, что молекулы идеального газа при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела.

Состояние газа характеризуется тремя макроскопическими параметрами: давлением, объёмом и температурой. На основе зависимости давления газа от концентрации молекул и температуры можно получить уравнение связывающее все три макроскопических параметра, характеризующие состояние достаточно разряженного газа данной массы. Это уравнение называют уравнением идеального газа.

npV= (m/M) * RT

Газовые законы.


Газовые законы определяют количественные зависимости между двумя параметрами газа при неизменном значении третьего.
Газовые законы справедливы для любых газов и газовых смесей.

Изопроцессы подчиняются газовым законам.



Изотермический процесс (T = const)


Изотермическим процессом
называются изменения состояния газа, протекающие при постоянной температуре.

Изотермический процесс в идеальном газе подчиняется закону Бойля-Мариотта:



Для газа данной массы произведение давления газа на его объем постоянно, если температура газа не меняется.

 

Изобарный процесс (p = const)


Изобарным процессом
называются изменения состояния газа, протекающие при постоянном давлении.

Изобарный процесс в идеальном газе подчиняется закону Гей-Люсака:



Для газа данной массы отношение объема газа к его температуре постоянно, если давление газа не меняется.

 

Изохорный процесс (V = const)


Изохорным процессом называются изменения состояния газа, протекающие при постоянном объеме.

Изохорный процесс в идеальном газе подчиняется закону Шарля:



Для газа данной массы отношение давления газа к его температуре постоянно, если объем газа не меняется.

 

2 вопрос. Принцип радиосвязи. Виды средств связи.

Радиосвязь - это разновидность беспроводной связи, у которой в качестве сигнала используются, распространяемые в пространстве, радиоволны. Принцип радиосвязи основан на передачи сигнала от передающего устройства, содержащего передатчик и передающую антенну, путем перемещения радиоволн в открытом пространстве, приемному устройству, содержащему приемную антенну и радиоприемник. Гармонические колебания с несущей частотой, принадлежащей какому-либо диапазону радиочастот, подвергаются модуляции в соответствии с передаваемым сообщением. Модулированные радиочастотные колебания представляют собой радиосигнал. От передатчика радиосигнал поступает в антенну, с помощью которой в окружающем пространстве возбуждаются соответственно модулированные электромагнитные волны. Свободно перемещаясь, радиоволны достигают приёмной антенны и возбуждают в ней электрические колебания, которые поступают далее в радиоприёмник. Принятый радиосигнал поступает в электронный усилитель, демодулируется, далее выделяется сигнал, аналогичный сигналу, которым были модулированы колебания с несущей частотой в радиопередатчике. После этого, дополнительно усиленный сигнал, преобразуется при помощи соответствующего воспроизводящего устройства в сообщение, аналогичное исходному.

Развитие средств связи.

Еще сравнительно недавно междугородная телефонная связь осуществлялась исключительно по проводам..

В настоящее время все шире применяются кабельные и радиорелейные линии, повышается уровень автоматизации связи.

В радиорелейных линиях связи используются ультракороткие (дециметровые и сантиметровые) волны. Эти волны распространяются в пределах прямой видимости.

Все большей популярностью пользуются оптоволоконные линии связи, позволяющие передавать большой объем информации. Процесс передачи основан на многократном отражении лазерного луча, распространяющегося по тонкой трубке (волокну).

Успехи в области космической радиосвязи позволили создать новую систему связи, названную «Орбита». В этой системе используются ретрансляционные спутники связи.

Созданы мощные и надежные системы, обеспечивающие телевизионным вещанием районы Сибири и Дальнего Востока. Они позволяют осуществить телефонно-телеграфную связь с отдаленными районами нашей страны.

Совершенствуются и находят новые применения и такие сравнительно старые средства связи, как телеграф и фототелеграф.

В нашей стране создается Единая автоматизированная система связи. В связи с этим развиваются, совершенствуются и находят новые области применения различные технические средства связи.

 

Билет 9.

1 вопрос. Внутренняя энергия и способы её измерения. Первый закон термодинамики.

Внутренняя энергия лежит в основе термодинамики.

Термодинамика – это теория тепловых процессов, в которой не учитывается молекулярное строение тел.

Именно термодинамика была первой научной теорией тепловых процессов (перед МКТ).

Термодинамика и статистическая механика (МКТ) изучают одни и те же явления и взаимно дополняют друг друга.

В 19 веке было доказано, что тела обладают не только механической энергией, но и энергией, заключенной внутри самих тел. Эта внутренняя энергия входит в баланс энергетических превращений в природе.

Допустим, скользит по льду шайба и останавливается под действием силы трения. Механическая энергия при этом не просто исчезает, а передается беспорядочно движущимися молекулами льда и шайбы. Интенсивность беспорядочного движения молекул возрастает. Оба тела нагреваются, что и означает увеличение их внутренней энергии.

С точки зрения МКТ внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул тела и потенциальных энергий взаимодействия всех молекул друг с другом.

Внутренняя энергия идеального газа зависит от одного параметра – это температура. От объема не зависит, т.к потенциальная энергия взаимодействия молекул равна нулю. В реальном же газе потенциальная энергия взаимодействия молекул не равна 0. Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит от температуры и объема.

Закон сохранения и превращения энергии, распространенный на тепловые явления носит название первого закона термодинамики.

В общем случае при переходе системы из одного состояния в другое внутренняя энергия изменяется одновременно как за счет совершения работы, так и за счет передачи теплоты.

Первый закон термодинамики формулируется именно для таких общих случаев:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

∆U = A + Q

Если система является изолированной, то работа внешних сил равна 0 и система не обменивается теплотой с окружающими телами. В этом случае внутренняя энергия изолированной системы остается неизменной.

2 вопрос. Свободные и вынужденные механические колебания. Смещение, амплитуда, период, частота, фаза.

Электромагнитные колебания были открыты случайно. После того как изобрели лейденскую банку (первый конденсатор) и научились сообщать ей большой заряд с помощью электростатической машины. Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются.. Удивительным было то, что нельзя было предсказать, какой конец сердечника катушки окажется северным полюсом, а какой — южным. Повторяя опыт примерно в одинаковых условиях, получали в одних случаях один результат, а в других — другой. Далеко не сразу поняли, что при разрядке конденсатора через катушку возникают колебания. За время разрядки конденсатор успевает много раз перезарядиться, и ток меняет направление много раз, в результате чего сердечник может намагничиваться различным образом.

 

Периодические или почти периодические изменения заряда, силы тока и напряжения называются электромагнитными колебаниями, которые происходят с очень большой частотой, значительно превышающей частоту механических колебаний. Поэтому для их наблюдения и исследования самым подходящим прибором является электронный осциллограф.

 

Колебания — движения, которые точно или приблизительно повторяются через определенные интервалы времени.
Свободные колебания — колебания в системе под действием внутренних тел, после того как система выведена из положения равновесия.
Колебания груза, подвешенного на нити, или груза, прикрепленного к пружине, — это примеры свободных колебаний. После выведения этих систем из положения равновесия создаются условия, при которых тела колеблются без воздействия внешних сил.

Условия возникновения свободных колебаний:

1. При выведении тела из положения равновесия в системе должна возникать сила, направленная к положению равновесия и, следовательно, стремящаяся возвратить тело в положение равновесия.
Пример: при перемещении шарика, прикрепленного к пружине, влево и при его перемещении вправо сила упругости направлена к положению равновесия.

2. Трение в системе должно быть достаточно мало. Иначе колебания быстро затухнут или вовсе не возникнут. Незатухающие колебания возможны лишь при отсутствии трения.

 

Вынужденные колебания - это колебания, возникающие в какой-либо системе в результате периодически изменяющегося внешнего воздействия: силы в механической системе, напряжения или тока в колебательном контуре. Вынужденные колебания всегда происходят с частотой, равной частоте внешнего воздействия; в системе при определенных условиях возможен резонанс. Вынужденные колебания полностью устанавливаются в системе лишь после того, как в ней затухнут также вызванные внешним воздействием собственные колебания. Примеры вынужденных колебаний: колебания мембраны телефона, иглы швейной машины, поршня в цилиндре автомобильного двигателя, рессор автомобиля, движущегося по неровной дороге, океанические приливы под действием Луны и др.

Характеристики колебательного процесса.

 

1. Смещение - отклонение колеблющейся точки от положе­ния равновесия в данный момент времени (м).

2. Амплитуда - наиболь­шее смещение от положения рав­новесия (м). Если колебания незатухающие, то амплитуда постоянна.

 

3. Период Т — время, за которое совершается одно полное колебание. Выражается в секундах (с). За время, равное одному периоду (одно полное колебание) тело совершает перемещение, равное __ и проходит путь, равный ____.

4. Частота n — число полных колеба­ний за единицу времени. В СИ измеряется в герцах (Гц). Частота колебаний равна одному герцу, если за 1 секунду совершается 1 полное колебание. 1 Гц= 1 с-1.

5. Циклической (круговой) частотой w периодических колебаний наз. число полных колебаний, которые совершаются за 2π единиц времени (секунд). Единица измерения – с-1.

6. Фаза колебания - φ - физическая величина, определяющая смещение x в данный момент времени. Измеряется в радианах (рад). Фаза колебания в начальный момент времени (t=0) называется начальной фазой (φ0).

 

 


Билет 10.

1 вопрос. Закон сохранения электрических зарядов. Закон Кулона.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 +... +qn = const.

 

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов.

Физические величины, которые могут принимать только дискретный ряд значений,

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси.

 

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона. Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

 

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

2 вопрос. Звуковые волны, скорость звука, громкость и высота.

Звук - это упругие волны в среде (часто в воздухе), которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда.

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения, как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Дело в том, что человеческое ухо воспринимает не все волны, а только те, которые создают тела, колеблющиеся с частотой от 16Гц до 20000Гц. Такие волны называются звуковыми. Колебания с частотой меньше 16Гц называется инфразвуком. Колебания с частотой больше 20000Гц называются ультразвуком.


Звуковые волны распространяются не мгновенно, а с некоторой конечной скоростью. Именно поэтому во время грозы мы сначала видим молнию, то есть свет (скорость света гораздо больше скорости звука), а затем доносится звук.

Скорость звука зависит от среды: в твердых телах и жидкостях скорость звука значительно больше,чем в воздухе. Это табличные измеренные постоянные. С увеличением температуры среды скорость звука возрастает, с уменьшением - убывает.

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

Частота звуковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.

Звуки от разных источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наибольшего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окраску, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретного голоса.

Эхо образуется в результате отражения звука от различных преград - гор, леса, стен, больших зданий и т.п. Эхо возникает только в том случае, когда отраженный звук воспринимается раздельно от первоначально произнесенного звука. Если отражающих поверхностей много и они находятся на разных расстояниях от человека, то отраженные звуковые волны дойдут до него в разные моменты времени. В этом случае эхо будет многократным. Препятствие должно находится на расстоянии 11м от человека, чтобы можно было услышать эхо.

Отражение звука. Звук отражается от гладких поверхностей. Поэтому при использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счет чего мощность звука увеличивается, и он распространяется на большее расстояние.

Эхолокация. Это способ определения местоположения тел по отраженным от них ультразвуковым сигналам. Широко применяется в мореплавании.

 

Ультразвук используется для обнаружения и определения различных повреждений в деталях машин (пустоты, трещины и др.).

Ультразвук широко используется в медицине для постановки диагноза и лечения некоторых заболеваний. В отличие от рентгеновских лучей его волны не оказывают вредного влияния на ткани. Диагностические ультразвуковые исследования (УЗИ) позволяют без хирургического вмешательства распознать патологические изменения органов и тканей.

Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и земной коре могут распространятся на очень далекие расстояния. Это явление находит практическое применение при определении мест сильных взрывов или положения стреляющего оружия. Распространение инфразвука на большие расстояния в море дает возможность предсказания стихийного бедствия - цунами. Медузы, ракообразные и др. способны воспринимать инфразвуки и задолго до наступления шторма чувствуют его приближение.

Билет 11.

1 вопрос. Электрическое поле и его характеристика. Напряженность, потенциал, разность потенциалов.

Заряды взаимодействуют не только при соприкосновении наэлектризованных тел, но и тогда, когда эти тела находятся на расстоянии друг от друга. Вид материи, посредством которой осуществляется взаимодействие электрических зарядов на расстоянии, называется электрическим полем.

Представление об электрическом поле было введено в науку М. Фарадеем в 30-х гг. 19 в. Согласно Фарадею, каждый покоящийся заряд создаёт в окружающем пространстве электрического поля. Поле одного заряда действует на другой заряд, и наоборот; так осуществляется взаимодействие.

Электрическое поле всегда существует вокруг электрического заряда и имеет две характеристики: силовую (напряженность электрического поля в данной точке) и энергетическую (потенциал электрического поля в данной точке).

Напряженность Е электрического поля в какой-либо точке измеряется силой F, с которой поле действует на единичный положительный точечный заряд q, помещенный в эту точку:

Е = F/ q.

Напряженность электрического поля – векторная величина. Направление вектора напряженности совпадает с направлением вектора силы F, действующей в данной точке на положительный заряд.

Потенциалом электрического поля в данной точке называется величина, численно равная значению потенциальной энергии единичного положительного точечного заряда, помещенного в этой точке.

Потенциалы точек электрического поля положительно заряженного тела положительны и уменьшаются по мере удаления от тела, а потенциалы точек электрического поля отрицательно заряженного тела отрицательны и увеличиваются при удалении от тела.


Дата добавления: 2015-11-04; просмотров: 34 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.027 сек.)







<== предыдущая лекция | следующая лекция ==>