Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1 вопрос. Виды механического движения. Скорость и ускорение тела при равноускоренном прямолинейном движении. 1 страница



Билет 1.

1 вопрос. Виды механического движения. Скорость и ускорение тела при равноускоренном прямолинейном движении.

Механическое движение – изменение положения тела в пространстве относительно других тел с течением времени. Движение поезда относительно земли, движение пассажира относительно поезда и т.д.

Скорость – векторная физ. величина, которая характеризует быстроту движения и его направления материальной точки в пространстве.

Траектория – это линия, вдоль которой движется тело.

Перемещение – это кратчайшее расстояния между начальной и конечной точкой.

Материальная точка – это тело, размерами которого можно пренебречь.

Путь – это длина участка территории, пройденного телом за промежуток времени.

Существует несколько видов механического движения это:

1) Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения.

Пример: Если водитель едет по прямой, при этом поддерживая постоянную скорость.

2) Неравномерное прямолинейное движение – это движение с переменной скоростью.

Равноускоренное движение – это движение, при котором скорость тела за любые равные промежутки времени одинаково изменяется. (скорость и ускорение направлены в одну сторону)

Пример: Падение цветочного горшка с балкона.

Равнозамедленное движение – это движение тела с отрицательным ускорением, т.е при таком движении тело равномерно замедляется. (скорость и ускорение противоположно направлены)

Пример: Движение камня, брошенного вертикально вверх.

3) Криволинейное движение – это движение, траектория которого представляет собой кривую линию.

Пример: движение планет, конца стрелки часов по циферблату.

При равноускоренном прямолинейном движении скорость тела с течением времени возрастает.

Ускорением тела при равноускоренном движении называют векторную физическую величину, равную отношению изменения скорости тела к промежутку времени, за который это изменение произошло.

Векторы скорости и ускорения направлены в одну сторону.

2 вопрос. Электромагнитные излучения различных диапазонов. Свойства и применение этих излучений.

Электромагнитные излучения представляют собой распространяющиеся в пространстве с конечной скоростью взаимосвязанные и не могущие существовать друг без друга переменные электрические и магнитные поля. Они обладают волновыми и квантовыми свойствами.



Радиоволны.

Частота: от 3 кГц до 300 ГГц.

Получают с помощью колебательного контура и макроскопических вибраторов.

Свойства: Радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Применение: Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение (тепловое).

Частота: 1,5 ТГц - 405 ТГц.

Длина волны:

· короткие: 0,74—2,5 мкм;

· средние: 2,5—50 мкм;

· длинные: 50—2000 мкм.

Излучается атомами и молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Человек излучает электромагнитные волны c длиной волны λ= l,9*10-6 м.

Свойства:

1. Проходит через некоторые непрозрачные тела, также сквозь дождь, дымку, снег.

2. Производит химическое действие на фотопластинки.

3. Поглощаясь веществом, нагревает его.

4. Вызывает внутренний фотоэффект у германия.

5. Невидимо.

6. Способно к явлениям интерференции и дифракции.

Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение: Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Видимое излучение.

Это часть спектра солнечного излучения (от красного до фиолетового).

Частота: 4*1014-8*1014 Гц

Свойства: Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Ультрафиолетовое излучение.

Частота: 1013—1016 Гц.

Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых t>1000ºС, а также светящимися парами ртути.

Свойства: Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

Применение: В медицине, в промышленности.

Рентгеновские лучи.

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (p=10-3-10-5 Па) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01нм).

Свойства: Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь.

Применение: В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

Гамма-излучение (гамма-лучи).

Вид электромагнитного излучения с чрезвычайно малой длиной волны — менее 2·10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствам

Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества.

Гамма-излучение используется в технике (напр., дефектоскопия), радиационной химии (для инициирования химических превращений, напр., при полимеризации), сельском хозяйстве и пищевой промышленности (мутации для генерации хозяйственно-полезных форм, стерилизация продуктов), в медицине (стерилизация помещений, предметов, лучевая терапия) и др.

 

Билет 2.

1 вопрос. Законы Ньютона. Их проявление, учёт и использование.

Законы Ньютона.

1) Существуют такие инерциальные системы отсчета, относительно которых тело при отсутствии воздействия на него внешних сил (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

2)Ускорение тела прямо пропорционально равнодействующей всех сил, приложенных к телу.

3) Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению

На основании этих законов строится вся классическая механика.
Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.

Законы Ньютона позволяют объяснить закономерности движения планет, их естественных и искусственных спутников. Иначе, позволяют предсказывать траектории движения планет, рассчитывать траектории космических кораблей и их координаты в любые заданные моменты времени. В земных условиях они позволяют объяснить течение воды, движение многочисленных и разнообразных транспортных средств (движение автомобилей, кораблей, самолетов, ракет). Для всех этих движений, тел и сил справедливы законы Ньютона.

 

2 вопрос. Экспериментальные методы регистрации ионизирующих излучений.

Камера Вильсона.

По пути следования заряженных частиц образуются треки конденсированного перенасыщенного пара на ионах.

С помощью камеры Вильсона определяется энергия, скорость, заряд.

Состоит из стеклянной пластины, поршня и вентиля.

Принцип действия: Рабочий объем камеры заполнен газом, который содержит насыщенный пар. При быстром перемещении поршня вниз газ в объеме расширяется и охлаждается, при этом становясь перенасыщенным. Когда в этом пространстве пролетает частица, создающая на своём пути ионы, то на этих ионах образуются капельки сконденсированного пара. В камере возникает трек частицы в виде полоски тумана.

Счётчик Гейгера.

Состоит из катода, тонкой нити натянутой вдоль оси, и анода.

Принцип действия: В герметизированный баллон с двумя электродами закачивается газовая смесь. На электроды подается высокое напряжение.. Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды. В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд.

С помощью счётчика Гейгера фиксируется факт попадания в трубку электронов и фотонов.

Пузырьковая камера.

Состоит из герметичной камеры, заполненной сжиженным газом.

Принцип действия: Рабочий объем заполнен нагретым почти до кипения жидким водородом, находящимся под высоким давлением. В перегретое состояние жидкость переводят, резко уменьшая давление. Заряженная частица образует на своем пути цепочку ионов, что приводит к резкому закипанию жидкости. Вдоль траектории частицы появляются пузырьки пара.

По фотографии трека различают альфа,бета, гамма частицы.

Фотоэмульсионная камера (кристаллы AgBr).

Принцип действия: Частица ионизирует атомы брома, восстанавливая ионы серебра. Образуется черный след.

По длине и толщине трека альфа-частицы определяют энергию, массу, заряд частицы, вид ядерной реакции.

Сцинтилляционный счётчик.

Основными элементами являются: вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и Фотоэлектронный умножитель (ФЭУ)

Принцип действия: Частица вызывает вспышку света в люминофоре, которая фиксируется фотоумножителем.

Обнаруживаются тяжелые частицы.

 

Билет 3.

1 вопрос. Идеальный газ. Основное уравнение МКТ. Температура – мера средней кинетической энергии молекул.

Идеальный газ.

Основные отличия идеального газа от реального:

1) Частицы идеального газа – сферические тела очень малых размеров, практически материальные точки.

2) Между частицами отсутствует силы межмолекулярного взаимодействия.

3) Соударение частиц является абсолютно упругим.

Идеального газа в природе не существует.

Качественное объяснение давления газа заключается в том, что молекулы идеального газа при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела.

На основе использования основных положений молекулярно-кинетической теории было получено уравнение, которое позволяло вычислить давление газа, если известны плотность вещества и скорость.

Молекулярно-кинетическая теория -теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

· все тела состоят из частиц: атомов и молекул;

· частицы находятся в непрерывном хаотичном движении (тепловом);

· частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

В 1738 Даниил Бернулли опубликовал труд «Гидродинамика», в котором заложил основы МКТ.

Началом становления МКТ послужила теория М. В. Ломоносова.

На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) термодинамической системы с микроскопическими (масса молекул, средняя скорость их движения).

 

Температура – это мера средней кинетической энергии молекул.

Предельную температуру, при которой давление идеального газа обращается в нуль при фиксированном объеме, называют абсолютным нулем температуры. Абсолютный нуль температуры: -273̊ C. Удобно отсчитывать температуру от абсолютного нуля. Так строится абсолютная шкала температур.

Абсолютная температура – температура отсчитываемая от абсолютного нуля.

Средняя кинетическая энергия поступательного движения молекул газа пропорциональная температуре. Чем выше температура, тем быстрее движутся молекулы.

Закон Авогадро: В равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

2 вопрос. Электромагнитная природа света. Волновые и квантовые свойства света.

Свет - электромагнитная волна.
Во второй половине 19 века Максвелл доказал теоретически существование электромагнитных волн, которые могут распространяться даже в вакууме. И он предположил, что свет тоже является электромагнитной волной. Потом это предположение подтвердилось.

Но актуально также было представление о том, что в некоторых случаях свет ведет себя как поток частиц. Теория Максвелла противоречила некоторым экспериментальным фактам. Но, в 1990 году, физик Макс Планк выдвинул гипотезу, что атомы испускают электромагнитную энергию отдельными порциями – квантами.

А в 1905 г. Альберт Эйнштейн выдвинул идею, о том, что электромагнитные волны с некоторой частотой можно рассматривать как поток квантов излучения с энергией E=р*ν. В настоящее время квант электромагнитного излучения называют фотоном. Фотон не обладает ни массой, ни зарядом и всегда распространяется со скоростью света.

То есть при излучении и поглощении свет проявляет корпускулярные свойства, а при перемещении в пространстве волновые.

 

Билет 4.

1 вопрос. Закон всемирного тяготения. Силы тяжести. Вес тела. Невесомость.

Закон всемирного тяготения: Сила взаимного притяжения двух тел прямо пропорциональная произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними (согласно 3-ему закону Ньютона).

Закон всемирного тяготения является одним из самых универсальных законов природы. Он справедлив для любых тел, обладающих массой.

Силой тяжести называют силу, с которой Земля притягивает тело, находящееся на ее поверхности или вблизи этой поверхности.

Под весом же в физике понимают нечто иное. Весом тела называют силу, с которой это тело действует на горизонтальную опору или растягивает подвес.

Допустим вес действует непосредственно на чашку пружинных весов и растягивает пружину; под действием этой силы поворачивается коромысло рычажных весов.

Представим себе взмывающий вверх самолет. Он и находящиеся в нем люди и предметы имеют одну и ту же скорость. Если бы в некоторый момент взаимодействие самолета с воздухом прекратилось, то он сам, люди и предметы внутри него начали бы свободно падать, двигаясь с одним и тем же ускорением, направленным к центру Земли. Вот при этом наступает состояние невесомости: падает пилот в кабине, и с тем же ускорением падают стены и потолок кабины.

Так же можно сказать про кабину космического корабля, когда она движется по орбите.

Наступление у тел состояния невесомости означает, что тела не давят на опору и, следовательно, на них не действует сила реакции опоры, они движутся только под действием силы притяжения к Земле.

2 вопрос. Развитие представлений о строении атома. Квантовые постулаты Бора.

Не сразу ученые пришли к правильным представлениям о строении атома. Первая модель атома была предложена английским физиком Дж. Дж. Томсоном, открывшим электрон. По мысли Томсона, положительный заряд атома занимает весь объем атома и распределен в этом объеме с постоянной плотностью. Его модель представляла собой “кекс с изюмом”. В положительно заряженную частицу как бы вкраплены отрицательно заряженные электроны.

Однако модель Томсона оказалась в полном противоречии с известными уже к тому времени свойствами атома, главным из которых является устойчивость.

Позже появилась другая модель строения атома, которую предложил Эрнест Резерфорд в результате эксперимента с рассеиванием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, — подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики.

Постулаты Бора.

1 постулат. Существуют особые, стационарные состояния атома, находясь в которых атом не излучает энергию, при этом электроны в атоме движутся с ускорением. Каждому стационарному состоянию соответствует определенная энергия.

2 постулат. Излучение света происходит при переходе атома из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией. Энергия излученного фотона равна разности энергий стационарных состояний.

В 1914 году Франк и Герц поставили опыт, подтверждающий теорию Бора: атомы разреженного газа обстреливались медленными электронами с последующим исследованием распределения электронов по абсолютным значениям скоростей до и после столкновения. При упругом ударе распределение не должно меняться, так как изменяется только направление вектора скорости. Результаты показали, что при скоростях электронов меньше некоторого критического значения удары упруги, а при критической скорости столкновения становятся неупругими, электроны теряют энергию, а атомы газа переходят в возбуждённое состояние. При дальнейшем увеличении скорости удары снова становились упругими, пока не достигалась новая критическая скорость. Наблюдаемое явление позволили сделать вывод о том, что атом может или вообще не поглощать энергию, или же поглощать в количествах равных разности энергий стационарных состояний.

 

Билет 5.

1 вопрос. Спектры излучения и поглощения. Спектральный анализ и его применение.

Спектр - относительная интенсивность электромагнитного излучения объекта исследования по шкале частот.

Свет, излучаемый источником, обычно имеет сложный состав.

Совокупность частот или длин волн, излучаемых данным веществом, называют спектром излучения.

Линейчатый.

В таком спектре присутствуют только некоторые частоты.
Каждый атом излучает строго определенный набор частот.

 

Спектр излучения натрия

Полосатый

Состоит из отдельных цветных полос, разделенных темными промежутками. Эти полосы представляют собой совокупность большого числа близко расположенных линий, сливающихся между собой.

 

Непрерывный или сплошной

В нем представлены все частоты (длины волн).

Солнечный спектр


Вид спектра зависит от свойств излучающих атомов, а также от характера взаимодействия их друг с другом.

 

Спектром поглощения называют набор частот или длин волн, поглощаемых данным веществом. Атомы химических элементов поглощают только те волны, которые способны сами излучать.

Спектральный анализ.

Главное свойство спектров в том, что длины волн линейчатого спектра вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов. Атомы любого хим.элемента дают спектр, не похожий на спектры всех других элементов. На этом и основан спектральный анализ – метод определения хим.состава вещества по его спектру. В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спектрального анализа были открыты многие новые элементы: рубидий, цезий и др. Именно с помощью спектрального анализа узнали химический состав Солнца и звезд. Гелий сначала открыли на Солнце и лишь затем в атмосфере Земли. С помощью спектрального анализа также определяют химический состав руд и минералов.

 

2 вопрос. Электрический ток в металлах. Природа электрического сопротивления и его зависимость от температуры.

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыт Толмена и Стьюарта):

Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся гальванометром.

Сила тока в проводнике пропорциональная скорости упорядоченного движения частиц. В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания движения.

Зависимость сопротивления проводника от температуры.

Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт:

Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр. Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.

Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.

Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.

Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.

Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.

 

Билет 6.

1 вопрос. Закон сохранения импульса. Реактивное движение. К.Э. Циолковский - основоположник теории космических полетов. История развития космонавтики.

Закон сохранения импульса.

Силы, возникающие в результате взаимодействия тела, принадлежащего системе с телом, не принадлежащим ей, называются внешними силами.

Силы, возникающие в результате взаимодействия тел, принадлежащих системе, называются внутренними силами.

Импульс системы тел могут изменить только внешние силы.

Закон сохранения импульса формулируется так: если сумма внешних сил равна нулю, то импульс системы сохраняется.

Импульс также сохраняется в изолированной системе, потому что в этой системе на тела вообще не действуют внешние силы.

Реактивное движение.

Под реактивным движением понимают движение тела, возникающее при отделении некоторой части с определенной скоростью относительно него. При этом возникает реактивная сила.

Например, можно надуть детский резиновый шарик и отпустить его. Шарик стремительно полетит. Реактивная сила будет действовать до тех пор, пока продолжается истечение воздуха.

В настоящее время получили широкое распространение реактивные двигатели. Ими оснащены не только ракеты, но и большая часть современных самолетов.

Любой реактивный двигатель должен иметь, по крайней мере, две составные части:

· Камера сгорания — в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов.

· Реактивное сопло — в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем самым создавая реактивную тягу.

Основным техническим параметром, характеризующим реактивный двигатель, является тяга — усилие, которое развивает двигатель в направлении движения аппарата.

К. Э. Циолковский — основоположник теории космических полетов. Научное доказательство возможности использования ракеты для полетов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы было дано впервые русским ученым и изобретателем Константином Эдуардовичем Циолковским (1857—1935). В его труде «Исследование мировых пространств реактивными приборами», опубликованном в 1903 г., была выведена формула, устанавливающая связь между скоростью ракеты, скоростью истечения газов, массой ракеты и массой горючего. Циолковский теоретически обосновал возможность создания ракеты, способной разогнаться до скорости 8 км/с и улететь в космическое пространство. В качестве горючего для такой ракеты он предлагал использовать жидкий водород, а в качестве окислителя — жидкий кислород. Конструкция жидкостной ракеты, по К. Э. Циолковскому, представлена на рисунке 62. В 1929 г. К. Э. Циолковский разработал идею создания «космических ракетных поездов». Теоретические работы К. Э. Циолковского более чем на полвека опередили уровень развития техники. Эти работы послужили основой для создания современной теоретической и практической космонавтики.

Успехи СССР в освоении космического пространства. Идеи К. Э. Циолковского о создании «космических ракетных поездов» — многоступенчатых ракет — были осуществлены советскими учеными и техниками под руководством выдающегося советского ученого, академика Сергея Павловича Королева (1907—1966).

Первый в мире искусственный спутник Земли был с помощью ракеты запущен в Советском Союзе 4 октября 1957 г.

12 апреля 1961 г. гражданин Советского Союза Юрий Алексеевич Гагарин(1934—1968) на космическом корабле «Восток» совершил первый в мире полет в космическом пространстве.

Советские космические ракеты доставили на Землю образцы грунта с поверхности Луны, осуществили мягкую посадку автоматических межпланетных станций на поверхность Венеры и Марса, вывели на околоземную орбиту долговременные орбитальные станции.

Полеты космических кораблей с космонавтами на борту, автоматических межпланетных станций и искусственных спутников Земли используются как для научных исследований в околоземном и межпланетном пространстве, так и для решения практических задач народного хозяйства.

С помощью спутников и автоматических межпланетных станций изучены состав и строение атмосферы Земли на больших высотах, химический состав и физические свойства атмосферы Венеры и Марса, получены изображения поверхности Луны, Венеры и Марса.

Спутники связи «Молния» через наземные станции «Орбита» осуществляют трансляцию телевизионных программ и телефонную связь на любых расстояниях в пределах нашей страны.

Метеорологические спутники «Метеор» используются для исследования процессов, происходящих в земной атмосфере, и составления прогнозов погоды.


Дата добавления: 2015-11-04; просмотров: 195 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.037 сек.)







<== предыдущая лекция | следующая лекция ==>