Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

кафедра строительных материалов Московского инженерно-строительного института им. В. В. Куйбышева (зав. кафедрой — д-р техн. наук, проф. Г. И. Горчаков) 18 страница



тона гидротехнических сооружений морозостойкость щебня гравия указана ниже:

Среднемесячная тем­

От 0 до — 10°С

От — 10 до— 20°С

Ниже — 20°(Я

пература наиболее хо­

 

 

 

лодного месяца

 

 

 

Марка по морозостой­кости

     

 

Щебень высшей категории качества для бетона должен иметь марку по морозостойкости не ниже F 25.

Шлаковый щебень получают дроблением шлака, который об разуется в процессе доменной плавки металлов (доменный шлак или при сжигании минерального топлива (топливный шлак) Шлаки должны обладать кристаллической структурой и не имет признаков распада. Шлаковый распад является результатом перехода одних соединений шлака в другие под действием газов, содержащихся в воздухе, и влаги. Этот переход сопровождается увеличением объема образующихся новых соединений, что вызы­вает растрескивание и распад кусков шлака.

В зависимости от крупности зерен щебень для бетона из до­менного шлака выпускают тех же фракций, что и щебень из горных пород: 5... 10; 10...20; 20...40 и 40...70 мм. Содержание зерен пластинчатой и игловатой формы не допускается более 25% по массе.

Прочность щебня характеризуется маркой, определяемой по| его дробимости при сжатии (раздавливании) в цилиндре в сухом] состоянии. Марка шлакового щебня по прочности бывает Др 15, 25, 35, и 45. Для приготовления бетона используют щебень с плотностью не менее 1000 кг/м3, содержание пылевидных частиц для щебня марок Др15 и 25 допускается не более 2% по массе, а для щебня марок Др35 и Др45 — 3% по массе.

По морозостойкости щебень подразделяется на шесть марок от F15 до F200. Щебень марки Др15 используют для бетонов высокой прочности (40 МПа и выше), а щебень марок Др25 н менее используется для бетона прочности 30 МПа и менее.

Шлаковый щебень используют в бетонных и железобетонных
соорУжениях гражданских и промышленных зданий, не рекомен­дуется его применение в конструкциях, эксплуатирующихся в „роточных водах.

§ 6.3. Свойства бетонной смеси и бетона

Тяжелый бетон должен приобрести проектную прочность к оп­ределенному сроку и обладать другими качествами, соответству­ющими назначению изготовляемой конструкции (водостойкостью, морозостойкостью, плотностью и т. д.). Кроме того, требуется определенная степень подвижности бетонной смеси, которая со­ответствовала бы принятым способам укладки ее.

Ф Бетонная сместь представляет собой сложную многокомпонен­тную систему, состоящую из новообразований, образовавшихся при взаимодействии вяжущего с водой, непрореагированных час­тиц клинкера, заполнителя, воды, вводимых специальных доба­вок и вовлеченного воздуха. Ввиду наличия сил взаимодействия между дисперсными частицами твердой фазы и воды эта система приобретает связанность и может рассматриваться как единое физическое тело с определенными реологическими, физическими и механическими свойствами.



Определяющее влияние на эти свойства будут оказывать количество и качество цементного теста, которое, являясь дис­персной системой, имеет высокоразвитую поверхность раздела твердой и жидкой фаз, что способствует развитию сил молеку­лярного сцепления и повышению связанности системы.

В процессе гидратации цемента количество гелеобразных но­вообразований растет, увеличивается дисперсность твердой фазы, повышается клеящаяся способность цементного теста и его свя­зующая роль в бетонной смеси.

Цементное тесто относят к так называемым структурирован­ным системам, которые характеризуются некоторой начальной прочностью. Определенная структура цементного теста создается за счет действия сил молекулярного сцепления между частицами, окаймленными тонкими пленками воды. Пленки жидкой фазы в структуре цементного теста придают ему свойство пластичности. Структурная вязкость цементного теста зависит от концентрации твердой фазы в водной суспензии. Поведение структурированных систем при приложении внешних сил в отличие от жидких тел резко меняется.

В зависимости от значения действующих внешних сил вяз­кость структурированных систем изменяется, часто на 2...3 по­рядка даже при постоянной температуре.

Способность структурированных систем изменять свои реоло­гические свойства под действием внешних сил и восстанавливать их после прекращения воздействия называется тиксотропией. Это свойство широко используют в технологии бетона, например Для формования изделий из жестких смесей путем вибрации. Для получения изделий высокого качества необходимо, чтобы

бетонная смесь имела консистенцию соответствующую методам ее укладу’ и уплотнения. Консистенцию бетонной смеси оценивают показателями ее подвижности или жесткости.

Подвижность бетонной смеси способность ее растекаться под собст­венной массой. Для определения под­вижности используют конус (рис. 6.4) который послойно в три приема за’ полняют бетонной смесью, уплотняя штыкованием. После уплотнения п следней форму снимают. Образова щийся при этом конус бетонной смес! под действием собственной массы осе^ дает. Величина осадки конуса (см) служит оценкой подвижности бетонной смеси. По этому показателю различают смеси подвижные (пластичные) с осад­кой конуса 1...12 см и более и жесткие, которые практически не дают осадки конуса, однако при воздействии вибра­ции последние обладают различными формовочными свойствами. Для оцен­ки жесткости этих смесей используют свои методы.

Показатель жесткости бетонной смеси определяют на специ­альном приборе (рис. 6. 5), который состоит из цилиндрического сосуда с внутренним диаметром 240 мм и высотой 200 мм с за­крепленным на нем устройством для измерения осадки бетонной

Рис. 6.5. Стандартный при­бор для определения жест­кости бетонной смеси:

/ — форма; 2 — упоры для крепления конуса; 3 — коиус; 4 — воронка; 5 — штанга;

6 — направляющая втулка;

7 — втулка для крепления дис­ка; 8 — диск с шестью отвер­стиями; 9 — штатив; 10 — за­жим штатива


 


 

меСи в виде направляющего штатива, штанги и металлического пИСка и шестью отверстиями. Прибор устанавливают на вибро- "пЛОщадку и плотно к ней прикрепляют. Затем в сосуд помещают металлическую форму-конус с насадкой, который с помощью специального кольца-держателя закрепляют в приборе и запол­няют тремя слоями бетонной смеси. Затем удаляют форму-конус, поворачивая штатив, устанавливают на поверхности бетонной смеси диск и включают виброплощадку. Вибрирование с ампли­тудой 0,5 мм продолжают до тех пор, пока не начнется выделение цементного теста из двух отверстий диска. Время вибрирования (с) и определяет жесткость бетонной смеси. Классификация бетонных смесей по степени их жесткости (удобоукладываемости) приведена в табл. 6. 2.

Таблица 6.2. Классификация бетонных смесей

Смесь

Подвижность, см

Жесткость, с

Особожесткая

 

Более 30

Жесткая

 

5...30

Малоподвижная

1...4

Подвижная

4...15

Литая

Более 15

 

На подвижность бетонной смеси влияет ряд факторов: вид цемента, содержание воды и цементного теста, крупность запол­нителей, форма зерен, содержание песка. Бетонные смеси одного и того же состава, но на разных цементах обладают разной водо- потребностью. Чем она выше, тем меньше подвижность или больше жесткость смеси. Бетонные смеси на портландцементах с гидравлическими добавками имеют подвижность меньшую, чем смеси на портландцементе при одном и том же количестве воды, взятой для приготовления смеси.

С увеличением содержания воды при неизменном расходе цемента подвижность бетонной смеси возрастает, но прочность бетона уменьшается. С увеличением содержания цементного тес­та подвижность бетонной смеси также повышается при сохране­нии практически той же прочности после затвердевания. Это объясняется тем, что при более высоком содержании цементного теста оно не только заполняет пустоты и обволакивает зерна заполнителей, но и раздвигает их, создавая между ними обиль­ные прослойки, уменьшающие трение между зернами, а это повышает подвижность смеси.

При более крупных заполнителях суммарная поверхность зе­рен получается меньше; следовательно, при том же количестве цементного теста прослойки его между зернами заполнителей оказываются толще, что увеличивает подвижность бетонной сме­си. Увеличение количества песка сверх оптимального, установ­ленного опытом, уменьшает подвижность бетонной смеси вслед, ствие возрастания суммарной поверхности заполнителей.

Форма зерен влияет на подвижность смеси — при округлой и гладкой поверхности зерен заполнителей суммарная поверх- ность их и трение между ними меньше, чем при острогранной форме и шероховатой поверхности. Поэтому бетонная смесь с гравием и окатанным песком подвижнее, чем смесь с щебнем и горным песком.

Наиболее экономичными являются жесткие бетонные смеси так как они требуют меньшего расхода цемента, чем подвижные! Подвижность бетонной смеси следует выбирать более низкую, но в то же время она должна обеспечивать удобную и качествен­ную укладку смеси. При выборе подвижности бетонной смеси учитывают размеры конструкции, простоту армирования и спосо­бы укладки и уплотнения смеси (табл. 6. 3).

Таблица 6.3. Требования к подвижности и удобоукладываемостн бетонной смеси

Тип конструкций и способ уплотнения бетонной смеси

Жесткость, с

Подвижность,

см

Сборные железобетонные с немедленной рас­палубкой, формуемые на виброплощадках

10...30

Перекрытия и стеновые панели, формуемые на виброплощадках

5...10

1...4

Железобетонные плиты, балки, колонны, изготовляемые с применением наружного или внутреннего вибрирования

2...5

4...8

Железобетонные изделия, формуемые в кас­сетах

4...12

Монолитные густоармированные железобе­тонные конструкции (бункера, снлосы и др.)

 

10...18

 

Введение в бетонную смесь ПАВ, например СДБ, повышает подвижность бетонной смеси и уменьшает ее водопотребность. Положительное воздействие на подвижность смеси оказывают суперпластификаторы (С-3, 10-03, 40-03 и др.). Их эффектив­ность выше в подвижных смесях, они позволяют снизить водо­потребность смеси на 20...25%.

Вместе с тем следует учитывать, что подвижность смеси со временем уменьшается вследствие физико-химического взаи­модействия цемента с водой.

• Твердение бетона и формирование его структуры. Структура бетона образуется в результате затвердевания бетонной смеси и его превращения в камень.

Уплотненная бетонная смесь в начальный период гидратации цемента сохраняет способность к пластическим деформациям. Со временем количество новообразований цементного камня увеличивается, система уплотняется и твердеет, образуется проч­ный камень определенной структуры. Время формирования струк-

pjj и свойств бетона зависит от состава и применяемых матери­алов- На формирование структуры оказывают влияние вид це­мента, химические добавки, В/Ц, температура бетонной смеси, влажность среды и др.

Введение в бетон пластифицирующих добавок, например СДБ, замедляет схватывание цемента в начальный период; повышение температуры ускоряет процесс схватывания и твердения.

Структура затвердевшего тяжелого бетона представляет со­бой цементный камень с размещенными в нем зернами заполни­теля, с множеством пор и пустот разных размеров и проис­хождения.

Макроструктура бетона может быть представлена системой щебень — цементно-песчаный раствор.

Макроструктура представляет строение системы песок — цементный камень, микроструктура — тонкое строение цемент­ного камня. Микроструктура цементного камня в бетоне со­стоит из новообразований, непрореагировавших зерен це­мента и микропор. С увеличением возраста бетона микрострукту­ра меняется в результате гидратации цемента и роста ново­образований, пористость уменьшается, меняются распределение пор и их размеры, бетон становится плотнее и прочнее. Проч­ность бетона растет неравномерно, в первые 7 сут после затворе- ния она нарастает быстро, а в дальнейшем замедляется. Скорость нарастания прочности бетона зависит от вида цемента.

В первые дни твердения прочность бетона на быстротвер- деющих цементах выше, чем, например, на белитовых цементах.

Для твердения бетона необходима теплая и влажная среда. При повышенной температуре и влажной среде (в горячей воде с температурой 80 °С, во влажном паре с температурой до 100 °С или в автоклаве при температуре 175 °С и среде насыщенного водяного пара высокого давления) твердение протекает значи­тельно быстрее, чем в нормальных условиях.

Твердение бетона при температуре ниже 15 °С замедляется, а при температуре ниже 0 °С практически прекращается. Изло­женное выше имеет важное значение при изготовлении сборных железобетонных изделий на заводах, а также при бетонировании в зимнее время.

Кроме прогрева бетона паром или электрическим током для ускорения применяют химические добавки, например хлористый кальций и др.

Все вышеизложенное оказывает влияние на твердение бетона, формирование его структуры и, следовательно, свойств бетона.

• Прочность бетона. В конструкциях зданий и сооружений бе­тон может находиться в различных условиях работы, испыты­вая сжатие, растяжение, изгиб, скалывание. Прочность бетона при сжатии зависит от активности цемента, во до цементного отношения, качества заполнителей, степени уплотнения бетонной смеси и условий твердения. Основными факторами при этом ока­зываются активность цемента и водоцементное отношение. Це­
менты высокой активности дают более прочные бетоны однако при одной и той активности цемента можно получить бетон различной прочности в зависимости от изменения количества воды в смеси. Эта зависимость была установлена в 1895 г.. проф. И. Г. Малюгой.

Для получения удобоук- ладываемой бетонной смеси отношение воды к цементу обычно принимают В/Ц = =0,4..,0,7, в то время как для химического взаимодействия це­мента с водой требуется не более 20% воды от массы цемента. Избыточная вода, не вступившая в химическое взаимодействие с цементом, испаряется из бетона, образуя в нем поры, что ведет к снижению плотности и соответственно прочности бетона. Исходя из этого, прочность бетона можно повысить путем умень­шения водоцементного отношения и усиленного уплотнения.

Всесторонние исследования советских ученых (Н. М. Беляева, Б. Г. Скрамтаева и др.) расширили и уточнили выводы И. Г. Ма- люги о влиянии различных факторов на свойства бетона и уста­новили зависимости, графически изображенные на рис. 6.6 или представленные в виде следующих формул:

при В/Ц > 0,4 (Ц/В < 2,5) R6 = ARn(Ц/В —0,5); при В/Ц < 0,4 (Ц/В > 2,5) R6 = Л,ЯЦ (Ц/В + 0,5),. где R6 — предел прочности бетона при сжатии в возрасте 28 сут нормального твердения, Па; Ra — активность цемента; Ц/В — цементно-водное отношение — отношение массы цемента к массе воды в единице объема бетонной смеси за вычетом воды, поглощаемой заполнителями; А, А\ — безразмерные коэффициен­ты, зависящие от свойств и качества применяемых материалов (табл. 6.4).

Таблица 6.4. Значения коэффициентов А и А\

Заполнители и вяжущие

А

А\

Высококачественные

0,65

0,43

Рядовые

0,60

0,40

Пониженного качества

0,55

0,37

 

К высококачественным материалам относятся щебень из плотных горных пород высокой прочности, песок оптимальной крупности (заполнители должны быть чистые, промытые, фрак­ционированные, с оптимальным зерновым составом смеси фрак­ций) и портландцемент высокой активности без добавок или с минимальным количеством гидравлической добавки. К рядовым
атериалам относятся заполнители среднего качества, в том числе гравий, портландцемент средней активности или высоко­прочный шлакопортландцемент. Материал пониженного каче­на — крупные заполнители низкой прочности и мелкие пески, отвечающие пониженным требованиям, и цементы низкой актив­ности.

Приведенные выше зависимости прочности бетона от различ­ных факторов, выраженные в виде формул и графиков, позво­ляют определить ориентировочную прочность бетона в 28-суточ- ном возрасте при известном водоцементном отношении, марке цемента и виде заполнители.

Наряду с активностью и качеством цемента, водоцементным отношением и качеством заполнителей на прочность бетона в значительной степени влияют степень уплотнения бетонной смеси, продолжительность и условия твердения бетона.

Прочность заполнителей не оказывает значительного влияния на прочность бетона до тех пор, пока она больше проектируемой марки бетона. Применение низкопрочных заполнителей с проч­ностью ниже требуемой марки бетона может существенно сни­зить прочность последнего или потребует высокого расхода цемента.

Шероховатость поверхности заполнителей также оказывает влияние на прочность бетона. В отличие от гравия зерна щебня имеют развитую шероховатую поверхность, чем обеспечивается лучшее сцепление с цементным камнем, а бетон, приготовленный на щебне при прочих равных условиях, имеет большую проч- дость, чем бетон на гравии.

На скорость твердения бетона влияют минералогический сос­тав цемента (см. гл. 5) и начальное количество воды в бетонной смеси. Последнее определяет подвижность (или жесткость) ее. Жесткие бетонные смеси (с низким содержанием воды) обеспе­чивают более быстрое твердение бетона, чем подвижные.

Прочность тяжелого бетона в благоприятных условиях температуры и влажности непрерывно повышается. В первые

7... 14 сут прочность бетона растет быстро, затем к 28 сут рост проч­ности замедляется и постепенно затухает; во влажной теплой среде прочность бетона может нарастать несколько лет. При нормальных условиях хранения средняя прочность бетонных об­разцов в 7-суточном возрасте составляет 60...70% прочности 28-суточных образцов, в 3-месячном возрасте — на 25%, а в 12- месячном — на 75% выше, чем у образцов в 28-суточном воз­расте.

Прочность бетона со временем изменяется примерно по лога­рифмическому закону; исходя из этого при расчетах прочности бетона для разных сроков пользуются формулой

Rn = ^?28 lg п/ lg 28,

где Rn — прочность бетона в возрасте суток, Па; /?2в — прочность бетона в возрасте 28 сут, Па.



 

Эта формула применима для ориентировочных расчетов прочности бетона на портландцементах средних марок в возрасте более 3 сут. Действительную прочность бетона в конструкции устанавливают только испытанием контрольных образцов, при­готовленных из рабочей бетонной смеси.

Большое влияние на рост прочности бетона оказывает среда. Нормальными условиями твердения бетона считаются относи­тельная влажность воздуха 90...100% и температура (20±2) °с Высокая влажность воздуха необходима, чтобы избежать испа­рения воды из бетона, что может привести к прекращению твердения. Твердение бетона ускоряется с повышением темпера­туры и замедляется с ее понижением.

Качество бетона по прочности характеризуется его классом (маркой), который определяется величиной предела прочности при сжатии образцов-кубов с ребром 150 мм, изготовленных из рабочей бетонной смеси после твердения их в течение 28 сут в нормальных условиях (МПа). Тяжелые бетоны подразделяют- на классы (марки) В7,5(100); В12,5(150); В15 (200); В25(300); В30(400); В40(500); В45(600). Превышение класса (марки) бетона от заданной проектной прочности свыше 15% не допус­кается, так как это влечет перерасход цемента. При испытании образцов в виде кубов размером 150X150X150 мм применяют щебень наибольшей крупности зерен 40 мм.

Класс (марка) бетона определяется также по пределу проч­ности на растяжение при изгибе образцов-балочек.

Качество бетона нельзя достаточно полно оценить по его средней прочности или марке. На практике имеет место откло­нение от этой величины. Колебания в активности цемента, свойства заполнителей, дозировка материалов и другие факторы приводят к неоднородности структуры и к колебанию свойств бетона.

Более полное представление о качестве бетона можно полу­чить при одновременном учете средней прочности бетона и его однородности, которая определяется на основе статистического анализа коэффициентом вариации v прочности. Он равен отноше­нию среднего квадратического отклонения отдельных результатов испытаний прочности бетона к его средней прочности. Коэффи­циент вариации прочности бетона колеблется от 0,05 до 0,2. При хорошо налаженной технологии на предприятиях значение v не превышает 10%.

При проведении статистического контроля качества бетона, где его прочность определяется большим количеством испытаний, расчет конструкций может проводиться не по средней, а по гарантированной прочности бетона.

Для конструкций, проектируемых с учетом требований СТ СЭВ 1406—78 и СНиП 2.03.01—84, прочность бетона харак­теризуется классами. Класс бетона определяется величиной га­рантированной прочности на сжатие с обеспеченностью 0,95.

При переходе от класса бетона В к средней прочности бетона гМПа), контролируемой на производстве для образцов с ребром 150 мм (при нормативном коэффициенте вариации 13,5%), мож-

применять формулу R? = В/0,778. Для класса В10 средняя г0чность бетона будет = 12,9 МПа, для класса В50 /?вр = 64,3 МПа.

§ 6.4. Проектирование состава бетона

Ф Проектирование состава имеет цель установить такой расход материалов на 1 м3 бетонной смеси, при котором наиболее эконо­мично обеспечивается получение удобоукладываемой бетонной смеси и заданной прочности бетона, а в ряде случаев необхо­димой морозостойкости, водонепроницаемости и специальных свойств бетона.

Состав бетонной смеси выражают в виде соотношения по мас­се (реже по объему) между количествами цемента, песка и щебня (или гравия) с указанием водоцементного отношения. Количество цемента принимают за единицу. Поэтому в общем виде состав бетонной смеси выражают соотношением цемент: песок:щебень = 1: х:у при В/Ц=г (например, 1:2,4:4,5 при В/Ц = 0,45).

Различают два состава бетона: номинальный (лаборатор­ный), принимаемый для материалов в сухом состоянии, и произ­водственный (полевой) — для материалов с естественной влаж­ностью.

К моменту расчета состава бетонной смеси нужно определить качество исходных материалов: цемента, воды, песка и щебня (гравия) — согласно требованиям ГОСТов.

Состав тяжелого бетона рассчитывают по методу «абсолют­ных объемов», разработанному проф. Б. Г. Скрамтаевым и его школой. В основу этого метода положено условие, что тяжелый бетон, уплотненный в свежем состоянии, приближается к абсо­лютной плотности, т. е. сумма абсолютных объемов исходных материалов в 1 м3 равна объему уплотненной бетонной смеси.

Исходными данными для расчета состава бетона являются зад&нная прочность бетона R6, характеристика бетонной смеси по степени подвижности или жесткости, а также характеристика исходных материалов — активность цемента Ru, плотности песка, Щебня или гравия и пустотность щебня или гравия.

В зависимости от условий, в которых будет находиться бетон в сооружении или конструкции, к нему могут предъявлять­ся также и другие требования, например степень морозостой­кости, стойкость к воздействию агрессивных вод, водонепро­ницаемость. Высокая морозостойкость и непроницаемость плот- ноуложенного бетона регулируются В/Ц и расходом вяжущего, отсюда вытекает необходимость нормирования В/Ц в гидротех­ническом, дорожном и других специальных бетонах.

Состав бетонной смеси, т. е. количество цемента, воды, песка и щебня (гравия), вначале устанавливают ориентировочно мето-


дом расчета, а затем уточняют испытанием пробных замесов бетонной смеси.

Расчет состава бетона производят в следующем порядке- определяют цементно-водное отношение, обеспечивающее получе­ние бетона заданной прочности и расход воды; рассчитывают потребный расход цемента, а затем щебня (или гравия) и песка- проверяют подвижность (жесткость) бетонной смеси при откло­нениях этих показателей от проекта; производят корректирова­ние состава бетонной смеси; приготовляют образцы для опреде­ления прочности и испытывают в заданные сроки; пересчиты­вают номинальный состав бетонной смеси на производственный.

• Определение цементно-водного отношения производят по сле­дующим формулам:

для бетонов с Ц/В ^ 2,5

#б = Л#ц(Ц/В — 0,5), откуда Ц/В= R6/{ARn) +0,5;

для бетонов Ц/В>2,5

Лв = Л1Лц(Ц/В + 0,5), откуда Ц/В = R6/(A,R„) —0,5.

• Определение расхода воды. Оптимальное количество воды в бетонной смеси (водосодержание, л/м3) должно обеспечивать необходимую подвижность (или жесткость) бетонной смеси. Ко­личество воды для затвердения 1 м3 бетонной смеси для всех расчетов в соответствии с ОНТП 07—85 принимается равным 200 л независимо от вида, жесткости и подвижности бетонных смесей.

• Определение расхода цемента. При определенном из формулы значении Ц/В и принятой водопотребности бетонной смеси В рас­считывают ориентировочный расход цемента, кг/м3 бетона:

Ц=(Ц/В)В.

Расход цемента на 1 м3 бетона должен быть не менее мини­мального. Если расход цемента на 1 м3 бетона окажется ниже допустимого, то необходимо довести его до' нормы или ввести тонкомолотую добавку.

• Определение расхода заполнителей (песка и щебня или гра­вия) на 1 м3 бетона. Для определения расхода песка и щебня (гравия) задаются двумя условиями:

1) сумма абсолютных объемов всех составных частей бетона (л) равна 1 м3 (1000 л) уплотненной бетонной смеси:

Ц/б«+ B/qb + П/д„ -j- Щ/д,ц,

где Ц, В, П, Щ — содержание цемента, воды, песка и щебня (гравия)', кг/м3; qu, qb, q„, Qu,— плотности этих материалов,’ кг/м3;

2) цементно-песчаный раствор заполнит пустоты в крупном заполнителе с некоторой раздвижкой зерен:

Ч _|_______ 0_____ 1_ r — \г Щ (г)

решая эти два уравнения, находят формулу для определения п0Хребности в щебне или гравии:

щ,. _ 1000_________

^пуст. 1Ц (г) а/бн ш (г) + 1/0ш (Г) ’

где Упуст.щ(г) — пустотность щебня или гравия в стандартном рыхлом состоянии (в формулу подставляется в виде относитель­ной величины); а — коэффициент раздвижки зерен щебня (или избытка раствора); для жестких смесей а = 1,05...1,20, для подвижных смесей а= 1,2...1,4 и более; qh щ (г) — насыпная плот­ность щебня (гравия), кг/л; рщ (г>—плотность щебня (гравия), кг/л.

Коэффициент а определяет отношение между песком и щеб­нем в бетоне.

После определения расхода щебня или гравия рассчитывают расход песка (кг/м3) как разность между проектным объемом бетонной смеси и суммой абсолютных объемов крупного заполни­теля, цемента и воды:

П = [1000 — (Ц/рц-(- В+Щ (Г) / Qu, (Г) ] дп.

Если гравий или щебень составляют из нескольких фракций, то необходимо заранее установить оптимальное соотношение между ними, пользуясь графиком наилучшего зернового состава или подбирая смесь с минимальным количеством пустот.

• Проверка подвижности бетонной смеси. После произведенного предварительного расчета состава бетона делают пробный замес и определяют осадку конуса или жесткость. Если бетонная смесь получилась менее подвижной, чем требуется, то увеличи­вают количество цемента и воды без изменения цементно-водного отношения. Если подвижность будет больше требуемой, то до­бавляют небольшими порциями песок и крупный заполнитель, сохраняя соотношения их постоянными. Таким путем добиваются заданной подвижности бетонной смеси.


Дата добавления: 2015-10-21; просмотров: 29 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.034 сек.)







<== предыдущая лекция | следующая лекция ==>