Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Рефрактометр – это оптический инструмент, предназначенный для измерения концентрации растворов с помощью явления преломления света. Термин «рефракция» (от лат. refractus - преломленный и греч.



Рефрактометр – это оптический инструмент, предназначенный для измерения концентрации растворов с помощью явления преломления света. Термин «рефракция» (от лат. refractus - преломленный и греч. metreo - измеряю) был введен в науку Ньютоном в начале 18-го века.

Типы рефрактометров
Среди современных рефрактометров можно выделить промышленные, лабораторные и портативные.

Промышленные и лабораторные рефрактометры предназначены для исследования веществ в научных лабораториях и контроля технологических процессов на производстве. Они имеют высокую точность измерений и сравнительно большие размеры.

Портативные рефрактометры предназначены для оперативного контроля веществ в лаборатории, на производстве или в полевых условиях. В свою очередь, портативные рефрактометры делятся на цифровые и ручные.

Цифровые портативные рефрактометры имеют жидкокристаллический экран, на котором отображается результат измерений. Обычно они также обладают дополнительными функциями, такими как одновременное измерение плотности и коэффициента преломления раствора, преобразование результатов в различные единицы измерения, поддержание температуры образца и прочее.

Ручные портативные рефрактометры имеют компактные размеры и не содержат никаких электронных схем и элементов питания, что позволяет с легкостью использовать их для измерений как на производстве, так и в домашних условиях. Сегодня такие рефрактометры очень популярны, благодаря своей точности, удобству эксплуатации, портативности и приемлемой цены.

Принцип действия рефрактометра базируется на использовании явления преломления света. При переходе из одного вещества в другое луч света отклоняется от прямолинейного направления на некоторый угол. Соотношение угла вхождения луча света в вещество и угла преломления его на границе раздела двух сред называется коэффициентом (показателем) преломления.

Строение рефрактометра схематически изображено на рисунке ниже. Основным оптическим элементом рефрактометра является главная призма, на которую наносится исследуемое вещество. Главная призма состоит из материала с высоким показателем преломления.

Благодаря этому, падающий свет, проходя через вещество и призму, преломляется под достаточно большим углом. Далее, через систему оптических линз, свет попадает на шкалу рефрактометра (проградуированную окружность). В зависимости от угла преломления луч света оказывается выше или ниже на шкале прибора. Освещенная часть шкалы при этом будет светлой; та часть, на которую луч света не попадет окажется темной. Величина угла преломления света зависит от состава раствора и его концентрации. Таким образом, по положению границы раздела между светом и тенью можно однозначно определить коэффициент преломления или оптическую плотность исследуемого раствора.



 

Современный фотометр – это прибор, название которого было образовано по греческим словам photos (свет) и metreo (измерять), и предназначаемый для исследований различных фотометрических и/или световых величин.

Фотометр – это прибор, который измеряет оптическую плотность прозрачных образцов и коэффициент пропускания света. Они находят широкое применение в лабораторной практике. Например, с помощью фотометров модно определять спектр образцов, что позволяет установить их химический состав.

Особый класс этих приборов – пламенные фотометры – предназначен для выявления в образцах наличия щелочных металлов (лития, натрия, калия).

Для этого образец сжигается при высокой температуре, а анализ спектра пламени с помощью фотометра позволяет выявить наличие щелочных металлов в образце. Решить эту задачу другими способами гораздо труднее.

В современных фотометрах световое излучение обычно преобразуется в электрические импульсы, которые регистрируются по принципу вольтметра и амперметра и затем преобразуются в компьютерный формат.

Атомно-абсорбционные спектрометры (ААС) - приборы, предназначенные для проведения количественного элементного анализа (до 70 элементов) по атомным спектрам поглощения, в первую очередь для определения содержания металлов в растворах их солей: в природных и сточных водах, в растворах-минерализатах консистентных продуктов, технологических и прочих растворах.

Основные области применения атомно-абсорбционных спектрометров (ААС) — контроль объектов окружающей среды (воды, воздуха, почв), анализ пищевых продуктов и сырья для их изготовления, медицина, геология, металлургия, химическая промышленность, научные исследования.

Принцип действия атомно-абсорбционного спектрометра основан на измерении величины поглощения луча света, проходящего через атомный пар исследуемой пробы. Для превращения исследуемого вещества в атомный пар используется атомизатор. В качестве источника света используется различные узкополосные источники света. Для достижения наилучшего результата необходимо соблюдать правила, сформулированные Уолшем:

1. длина волны, соответствующая максимальному поглощению атомных паров, должна быть равна длине волны максимальной интенсивности излучения источника

2. полуширина линии поглощения атомных паров должна быть по крайне мере в два раза больше полуширины линии испускания источника

После прохождения через атомные пары исследуемой пробы луч света поступает на монохроматор, а затем на приёмник, который и регистрирует интенсивность излучения.

 

 

 

Колориметр –

В физике: прибор для контроля цвета источников света, красок, экранов мониторов и др. действие которого основано на измерении интенсивности световых потоков основных цветов, дающих при смешении цвет, неотличимый от измеряемого.

В химии: оптический прибор для измерения концентрации веществ в растворах, действие которого основано на свойстве окрашенных растворов поглощать проходящий через них свет тем сильнее, чем выше в них концентрация окрашивающего вещества.

 

 

Люминесцентный анализатор

Приборы, которые используются при люминесцентном анализе, используются для определения в воздухе, воде, почве и других средах концентрации веществ неорганического происхождения. Они используются как на производстве, так и при проведении научных изысканий, лабораторных работ.

Процесс люминесценции включает в себя переход молекул на возбужденный электронный уровень, колебательную релаксацию в возбужденном состоянии, переход на основной электронный уровень либо с испусканием света (собственно люминесцентное излучение), либо безызлучательно и колебательной релаксации в основном состоянии.

Поляриметрия (от греч. polos—полюс и metreo — измеряю), физико-химический метод исследования, основанный на измерении: 1) степени поляризации света и 2) оптической активности, т. е. величины вращения плоскости поляризации света при прохождении его через оптически активные вещества. Величина такого вращения в растворах зависит от их концентрации, поэтому Поляриметрия широко применяется для измерения концентрации оптически-активных веществ.

Измерение вращательной дисперсии - изменения угла вращения при изменении длины волны света (т. н. спектрополяриметрия) - позволяет изучать строение веществ. Оптическая активность чрезвычайно чувствительна к любым изменениям строения вещества и к межмолекулярному взаимодействию, поэтому она может дать ценную информацию о природе заместителей в молекулах (как органических, так и комплексных неорганических соединений), об их конформациях, внутреннем вращении и т.д. Трудности теоретического расчёта оптической активности химических соединений определяются принципиальной неаддитивностью явления, не позволяющей вести расчёты на основе простой схемы, как это делается, например, в случае рефракции молекулярной.

Измерения производятся с помощью оптических приборов — поляриметров. Угол поворота плоскости поляризации зависит также от длины волны света, проходящего через раствор. Это свойство используется для изучения строения биополимеров. Поляримерию применяют для исследования углеводов с различными целями: идентификации, количеств. анализа, изучения строения и стереохимии.

Поскольку существует масса различных областей применения, то конструкции поляриметров могут отличаться, но ключевые элементы одинаковы.

· Источник света — чаще это натриевая лампа или лампа накаливания с тепловым экраном для защиты образца от ИК излучения (для твердых деталей важно избегать термических деформаций, для жидкостей — градиента плотности) и матовым стеклом, дающим равномерную засветку наблюдаемой области.

· Светофильтр — элемент, выделяющий определенную область в спектре, так как наблюдать приходится монохроматический свет. Таким элементом может быть пластина из фильтрующего вещества или призма.

· Двух поляризаторов расположенных по обе стороны от анализируемого образца. Часто один из них это поляроид, а второй либо поляроид, либо склеенная призма из исландского шпата.

· Пластин-компенсаторов толщиной кратной длине волны или четверть-волны, для подбора метода измерений.

· Измерительное устройство — лимб или электронный датчик.

 

Газовый анализ - качественное обнаружение и количественное определение компонентов газовых смесей. Проводится как с помощью автоматич. газоанализаторов, так и по лабораторным методикам. Как правило, методы газового анализа основаны на измерении физических параметров среды, значения которых зависят от концентраций определяемых компонентов. В избирательных методах измеряемое свойство зависит преимущественно от содержания определяемого компонента. Неизбирательные методы основаны на измерении интегральных свойств пробы (напр. плотности, теплопроводности), которые зависят от относит. содержания всех ее компонентов. Последние методы применяют для анализа бинарных и псевдобинарных газовых смесей, в которых варьируется содержание только определяемого компонента, а соотношение концентраций остальных компонентов не изменяется.

 

Газоанализа́тор — измерительный прибор для определения качественного и количественного состава смесей газов. Различают газоанализаторы ручного действия и автоматические. Среди первых наиболее распространены абсорбционные газоанализаторы, в которых компоненты газовой смеси последовательно поглощаются различными реагентами. Автоматические газоанализаторы непрерывно измеряют какую-либо физическую или физико-химическую характеристику газовой смеси или её отдельных компонентов. По принципу действия автоматические газоанализаторы могут быть разделены на 3 группы:

1. Приборы, основанные на физических методах анализа, включающих вспомогательные химические реакции. При помощи таких газоанализаторов, называемых объёмно-манометрическими или химическими, определяют изменение объёма или давления газовой смеси в результате химических реакций её отдельных компонентов.

2. Приборы, основанные на физических методах анализа, включающих вспомогательные физико-химические процессы (термохимические, электрохимические, фотоколориметрические, хроматографические и др.). Термохимические, основанные на измерении теплового эффекта реакции каталитического окисления (горения) газа, применяют главным образом для определения концентраций горючих газов (например, опасных концентраций окиси углерода в воздухе). Электрохимические позволяют определять концентрацию газа в смеси по значению электрической проводимости раствора, поглотившего этот газ. Фотоколориметрические, основанные на изменении цвета определённых веществ при их реакции с анализируемым компонентом газовой смеси, применяют главным образом для измерения микроконцентраций токсичных примесей в газовых смесях — сероводорода, окислов азота и др. Хроматографические наиболее широко используют для анализа смесей газообразных углеводородов.

3. Приборы, основанные на чисто физических методах анализа (термокондуктометрические, денсиметрические, магнитные, оптические и др.). Термокондуктометрические, основанные на измерении теплопроводности газов, позволяют анализировать двухкомпонентные смеси (или многокомпонентные при условии изменения концентрации только одного компонента). При помощи денсиметрических газоанализаторов, основанных на измерении плотности газовой смеси, определяют главным образом содержание углекислого газа, плотность которого в 1,5 раза превышает плотность чистого воздуха. Магнитные газоанализаторы применяют главным образом для определения концентрации кислорода, обладающего большой магнитной восприимчивостью. Оптические газоанализаторы основаны на измерении оптической плотности, спектров поглощения или спектров испускания газовой смеси. При помощи ультрафиолетовых газоанализаторов определяют содержание в газовых смесях галогенов, паров ртути, некоторых органических соединений.

 

 

В системах мониторинга и водоподготовки, в различных учреждениях военно-промышленного и топливно-энергетического комплексов, в пищевой, химической, нефтехимической и микробиологической промышленностях давно применяются такие приборы, как нитратомеры, кислородомеры, водородомеры и прочие анализаторы химического состава жидкостей. Также данные анализаторы бывают незаменимы при научных, медицинских и биологических исследованиях, а также для контроля оптимальной эффективности работы различных экологических служб.
Современные анализаторы отличаются небольшими компактными размерами, высокими техническими характеристиками и простым понятным управлением.

Анализаторы примесей в воде предназначены для измерения массовой концентрации неорганических и органических соединений в жидкости, для измерения массовой концентрации нефтепродуктов в питьевых, природных и сточных водах, почвах, грунтах.

· экологические исследования: экспресс-анализ, скрининговые, мониторинговые исследования водоемов на содержание загрязнителей, нефтепродуктов; контроль загрязненности нефтепродуктами, тяжелыми металлами

 


Дата добавления: 2015-10-21; просмотров: 94 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
 | Дорогие модераторы, в связи с тем, что на собственном опыте мы убедились в том, что нельзя сразу объяснить все тонкости работы я напишу вам про них в этом файле. Этот файл так же станет пособие для

mybiblioteka.su - 2015-2024 год. (0.012 сек.)