Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Перевод с английского: В. И. Кандрор, Э. А. Антух, Т. Г. Горлина. 6 страница



1. При полигенном наследовании часто наблюдается неравномерное распределение признака между полами.

2. Повторный риск полигенной болезни зависит от пола, тяжести болезни, степени генетической предрасположенности (различающейся в разных семьях), частоты болезни в данной семье, распространенности болезни среди населения.

Б. Доказано, что некоторые распространенные пороки развития — расщелина верхней губы, расщелина верхней губы в сочетании с расщелиной твердого неба, изолированная расщелина твердого неба, миеломенингоцеле в сочетании с анэнцефалией — имеют полигенную природу. Менее ясна этиология септооптической дисплазии, голопрозэнцефалии, синдрома каудальной дисплазии, а также дисгенезии щитовидной железы. Эти пороки обычно возникают спорадически (в семейном анамнезе нет указаний на какие-либо наследственные болезни); их повторный риск меньше, чем для полигенных пороков развития.

В. Известны полигенные болезни с высокой частотой встречаемости в отдельных семьях, в частности — аутоиммунные эндокринные болезни. В таких семьях необходимо детально обследовать ближайших родственников пробанда. Пример — аутоиммунные заболевания щитовидной железы. Маркерами аутоиммунного поражения тироцитов служат антитиреоидные аутоантитела. Они присутствуют в сыворотке больных с диффузным токсическим зобом или хроническим лимфоцитарным тиреоидитом, но могут выявляться и у родственников без клинических признаков болезни. Наличие аутоантител у здорового родственника свидетельствует о высоком риске болезни.

Г. Врожденные эндокринные болезни, обусловленные факторами внешней среды. Заражение женщины вирусом кори или краснухи в I триместре беременности значительно повышает риск гипопитуитаризма, изолированного дефицита СТГ, гипотиреоза и инсулинозависимого сахарного диабета у будущего ребенка. Прием гидантоинов (например, фенитоина) может вызвать нарушения половой дифференцировки у плода (недоразвитие наружных половых органов или наружные половые органы промежуточного типа). Воздействие гидантоинов, ретиноидов и алкоголя на плод часто приводит к пре- и постнатальной задержке роста.

Д. Врожденные болезни, обусловленные эндокринными факторами. Эндокринные и метаболические расстройства у беременных снижают жизнеспособность плода и вызывают пороки развития в эмбриональном и неонатальном периодах. К числу таких расстройств относятся гипопаратиреоз, гипотиреоз и тиреотоксикоз, гипо- и гиперфункция надпочечников. Инсулинозависимый сахарный диабет у беременной является причиной самопроизвольных абортов и существенно повышает риск больших пороков развития (наиболее часто встречаются дефекты развития сердца и ЦНС). На развитие плода и новорожденного влияют многие лекарственные средства, действующие на эндокринную систему, в том числе половые гормоны и антитиреоидные средства (йодиды, 131I, пропилтиоурацил, тиамазол).



VIII. Особые варианты наследования

А. Мозаицизм. Хромосомные аберрации и мутации одиночных генов могут локализоваться не во всех клетках организма, а только в отдельных клетках или клеточных популяциях. Если мутации возникают только в первичных половых клетках, говорят о гонадном мозаицизме. При гонадном мозаицизме у родителей менделевское наследование нарушается: не все потомки наследуют мутацию. Мутации в соматических клетках нередко случаются на ранних этапах эмбриогенеза. В таких случаях мутации могут локализоваться в тканях, происходящих из одного зародышевого листка, или в отдельных клонах клеток всех тканей организма. Формирование фенотипа у больных с мозаицизмом зависит от числа и распределения клонов клеток, несущих генетический дефект.

1. Инактивация X-хромосомы происходит на самых ранних стадиях эмбриогенеза и обеспечивает компенсацию дозы гена для большинства генов, локализованных на X-хромосоме. У женщин, гетерозиготных по аллелям X-хромосомы, имеет место «физиологический мозаицизм»: экспрессия всех генов, локализованных на X-хромосоме, характеризуется мозаичностью (исключая гены, не подвергшиеся инактивации).

2. Хромосомный мозаицизм очень часто встречается у больных с аномалиями половых хромосом. Как правило, клиническая картина при мозаицизме выражена не так ярко, как у лиц с полной формой болезни. Признаки хромосомного мозаицизма: асимметрия туловища или конечностей, неравномерная пигментация кожи. Эти признаки наиболее характерны для больных с мозаицизмом с X-аутосомными транслокациями. Для подтверждения диагноза мозаицизма исследуют культуры фибробластов больных. Мозаицизм у матери может влиять на развитие плода. Например, некоторые случаи внутриутробной задержки развития плода с нормальным кариотипом обусловлены частичным мозаицизмом плаценты.

3. У больных с мозаицизмом с мутацией одиночного гена может наблюдаться неоднородное распределение дефекта (пример — очаговый или сегментарный нейрофиброматоз). Если мутация доминантного гена происходит в одном из клонов первичных половых клеток родителей (гонадный мозаицизм), то она может проявиться у ребенка. Этим объясняются некоторые случаи рождения детей с моногенными болезнями от здоровых родителей.

Б. При однородительской дисомии обе гомологичные хромосомы происходят от одного родителя (т. е. хромосома другого родителя не наследуется). Возможный механизм дисомии — элиминация лишней хромосомы у плода с трисомией на ранних стадиях эмбриогенеза. Болезнь проявляется в том случае, если элиминируется лишняя хромосома, происходящая из нормальной гаметы.

1. Однородительская дисомия была описана при муковисцидозе, когда оба мутантных аллеля наследовались от одного родителя. В таких случаях дисомия имитирует аутосомно-рецессивное наследование.

2. У 20—30% больных с синдромом Прадера—Вилли, имеющих по данным цитогенетического исследования нормальный кариотип, с помощью молекулярно-биологических методов обнаруживается дисомия материнской 15-й хромосомы. Отцовская 15-я хромосома у таких больных отсутствует.

3. Предполагают, что однородительская дисомия является причиной внутриутробной задержки развития, умственной отсталости и микроцефалии. Эти предположения пока не подтверждены молекулярно-биологическими исследованиями.

В. Геномный импринтинг. Изменения одиночных генов или целых районов хромосом родителей при мейозе могут приводить к появлению гамет с генетическими дефектами. В таких случаях фенотипическое проявление дефекта у ребенка зависит от того, какая именно гамета участвует в образовании зиготы.

1. Характер проявления аутосомно-доминантных болезней зависит от происхождения дефектного аллеля. Например, ювенильная форма болезни Гентингтона наблюдается только у детей больных отцов, а наследственная атрофическая миотония — только у детей больных матерей.

2. Импринтинг наблюдается у многих больных с хромосомными делециями. При синдроме Прадера—Вилли всегда обнаруживается делеция отцовской 15-й хромосомы 15q11—13. Делеция этого же района материнской 15-й хромосомы обусловливает развитие синдрома Эйнджелмена (комплекс врожденных психических расстройств). Синдром Эйнджелмена легко отличим от синдрома Прадера—Вилли (см. гл. 4, п. V.А.4.а).

Г. Митохондриальное наследование. Дефекты мтДНК лежат в основе некоторых редких болезней. Частота таких болезней в разных популяциях различается; они поражают детей обоего пола, но всегда передаются через материнские гаметы. Примеры: наследственная атрофия зрительных нервов (синдром Лебера), митохондриальная энцефаломиопатия, сахарный диабет с митохондриальным наследованием.

Пренатальная диагностика

IX. Общие сведения. Современные методы пренатальной диагностики выявляют практически любые хромосомные аномалии и многие дефекты одиночных генов. Исследование ворсин хориона и амниоцентез на ранних сроках беременности позволяют получить клетки плода в конце I — начале II триместра. Эти исследования показаны при высоком риске передачи генетического дефекта, который может быть диагностирован цитогенетическим, биохимическим или молекулярно-биологическим методом. Для оценки развития плода (его морфологии и показателей роста) все шире применяют УЗИ. При амниоцентезе, проводимом под контролем УЗИ, риск тяжелых осложнений не превышает 0,5%. Риск осложнений при исследовании ворсин хориона иамниоцентезе на ранних сроках беременности не намного выше (если врач опытный).

X. Показания к амниоцентезу

Хотя каждое медицинское учреждение обычно разрабатывает собственную программу пренатальной диагностики, общепринятыми показаниями являются:

А. Возраст женщины ³ 35 лет.

Б. Беременность у женщины, уже имеющей ребенка с хромосомной болезнью.

В. Хотя бы один из родителей — носитель сбалансированной хромосомной перестройки.

Г. Хромосомная болезнь хотя бы у одного из родителей.

Д. В семейном анамнезе есть указания на нарушения мейоза.

Е. Оба родителя — гетерозиготы по аллелю аутосомно-рецессивной болезни, которую можно диагностировать цитогенетическим, биохимическим или молекулярно-биологическим методом.

Ж. У одного из родителей — аутосомно-доминантная болезнь, которую можно диагностировать указанными методами.

З. Мать — носитель гена сцепленной с X-хромосомой болезни, которую можно диагностировать цитогенетическим, биохимическим или молекулярно-биологическим методом.

И. Мать — носитель гена сцепленной с X-хромосомой болезни, которую нельзя диагностировать указанными методами. В этом случае необходимо определить пол плода.

К. Повторные самопроизвольные аборты (не менее трех случаев) или рождение ребенка с множественными врожденными аномалиями неизвестной природы (в тех случаях, когда нет времени на обследование родителей).

Л. В семейном анамнезе имеются указания на наличие дефектов нервной трубки.

М. В сыворотке беременной обнаружен неконъюгированный эстриол либо ненормальное содержание альфа-фетопротеина или бета-субъединицы ХГ.

Литература

1. Buyse ML. Birth Defects Encyclopedia. Cambridge: Blackwell, 1990.

2. Emery A, Rimoin D. Principles and Practice of Medical Genetics (2nd ed). New York: Churchill Livingstone, 1990.

3. Gorlin RJ, et al. Syndromes of the Head and Neck (3rd ed). New York: Oxford University Press, 1990.

4. Hall JG, et al. Handbook of Normal Physical Measurements. New York: Oxford University Press, 1989.

5. Jones KL. Smith's Recognizable Patterns of Human Malformation (4th ed). In M Markowitz (ed.), Major Problems in Clinical Pediatrics (vol VII). Philadelphia: Saunders, 1988.

6. McKusick V. Mendelian Inheritance in Man (10th ed.). Baltimore: Johns Hopkins University Press, 1992.

7. Rimoin DL. Disorders of the Endocrine Glands. In AA Dietz (ed.), Genetic Disease: Diagnosis and Treatment. Proceedings of the Fifth Arnold O. Beckman Conference in Clinical Chemistry. Monterey, CA: The Association for Clinical Chemistry, 1983.

8. Taybi H, Lachman RS. Radiology of Syndromes, Metabolic Disorders, and Skeletal Dysplasias (3rd ed). Chicago: Yearbook, 1990.

9. Vogel F, Motulsky AG. Human Genetics: Problems and Approaches (2nd ed). New York: Springer, 1986.

10. Wiedmann H-R, et al. Atlas of Clinical Syndromes—A Visual Aid to Diagnosis (2nd ed). St. Louis: Mosby, 1989.

11. Wynne-Davis R, Hall CM, Apley AG. Atlas of Skeletal Dysplasias. Edinburgh: Churchill Livingstone, 1985.


Глава 5. Молекулярная биология и клиническая эндокринология

У. Чин

Методы молекулярной биологии и генной инженерии произвели революцию в исследованиях структуры и функций клеток и позволили расшифровать основные механизмы наследственности. Стремительное накопление и осмысление данных о механизмах биосинтеза макромолекул и их роли в физиологии клетки способствовало прогрессу биохимии и экспериментальной эндокринологии. Успехи в этих областях знаний стали основой достижений современной клинической эндокринологии.

I. Передача информации. Вся генетическая информация соматической клетки человека закодирована 3 миллиардами пар нуклеотидов ДНК. Геном человека (т. е. совокупность генов гаплоидного набора хромосом) содержит около 100 000 генов, распределенных между 23 хромосомами. Информация переносится с ДНК на мРНК в процессе транскрипции, происходящем в ядре; информация от мРНК передается полипептидной цепи в процессе трансляции в цитоплазме (см. рис. 5.1). Дальнейшие посттрансляционные модификации полипептидной цепи приводят к образованию зрелых, функционально активных белков, таких, как пептидные гормоны, рецепторы гормонов, структурные белки клеточных мембран, белки цитоскелета.

II. Экспрессия гена

А. Каждый ген — это транскрипционная единица, содержащая структурную и регуляторную области (см. рис. 5.2). Структурная область включает участки, кодирующие последовательность аминокислот в полипептидной цепи (экзоны), и некодирующие участки (интроны). При транскрипции структурной области первоначально образуется транскрипт РНК (предшественник мРНК), содержащий как экзоны, так и интроны. Транскрипт РНК претерпевает процессинг — ряд превращений в ядре: к 5'-концу транскрипта присоединяется 7-метилгуанозин-пирофосфат; к 3'-концу присоединяется полиаденилатный «хвост»; интроны выщепляются, а экзоны стыкуются друг с другом и образуют зрелую мРНК (последний процесс называют сплайсингом). Зрелая мРНК, поступающая из ядра в цитоплазму, — это последовательность нуклеотидов, кодирующая уникальную полипептидную цепь. Кодирующая последовательность мРНК ограничена нетранслируемыми 3'- и 5'-последовательностями.

Б. Полипептид, кодируемый мРНК, — это молекула-предшественник, которая обычно подвергается процессингу. Это регулируемый многоэтапный процесс, включающий фосфорилирование или гликозилирование некоторых аминокислот, а также протеолитическое выщепление определенных участков полипептидной цепи (например, C-пептида инсулина). Процессинг завершается образованием зрелого белка. Характерное свойство секретируемых белков (в том числе пептидных гормонов) — присутствие сигнального пептида на N-конце молекулы предшественника. Сигнальный пептид состоит из 20—30 аминокислот, многие из которых гидрофобны; он необходим для переноса предшественника из цитозоля в эндоплазматический ретикулум. В полости эндоплазматического ретикулума сигнальный пептид отщепляется, а молекула предшественника подвергается дальнейшим модификациям (например, гликозилированию) и поступает в аппарат Гольджи, где процессинг предшественника завершается, зрелый белок упаковывается в секреторные пузырьки и выводится во внеклеточное пространство. Присутствие различных молекул-предшественников на разных этапах процессинга является важнейшей особенностью биосинтеза почти всех белков. Физиологическая роль предшественников пока не выяснена, хотя понятно, что их многообразие создает предпосылки для изменчивости зрелого белка. Другой источник изменчивости белка — перестройки генома. Изменение хотя бы одного нуклеотида в гене может нарушить структуру или скорость биосинтеза зрелого белка либо его предшественников. Поэтому малейшие изменения ДНК могут быть причиной наследственных эндокринных и метаболических нарушений.

III. Регуляция экспрессии гена

А. Нуклеотидная последовательность структурной области гена транскрибируется только в присутствии регуляторной области (см. рис. 5.2). Регуляторная область, расположенная обычно на 5'-конце гена, контролирует уровень экспрессии гена, т. е. количество его продукта — мРНК. Регуляторная область включает несколько структурно-функциональных компонентов, в том числе — промотор и энхансер. Промотор состоит из 100—150 нуклеотидов, начиная от точки инициации транскрипции в 5'-фланкирующей области, и содержит несколько коротких нуклеотидных последовательностей — цис-элементов. Цис-элементы отвечают за связывание регуляторных белков, кодируемых другими генами (такие регуляторные белки называют транс-факторами).

Б. Первым цис-элементом является ТАТА-бокс — последовательность, богатая тимином и аденином. ТАТА-бокс расположен на расстоянии 25—35 нуклеотидов от точки инициации транскрипции. Взаимодействие ТАТА-связывающего регуляторного белка с ТАТА-боксом служит сигналом для присоединения РНК-полимеразы к промотору и для инициации транскрипции.

В. Второй цис-элемент промотора включает ЦААТ-бокс и участок Sp1. Эти последовательности взаимодействуют с разными транскрипционными факторами, контролирующими экспрессию гена.

Г. На разном расстоянии от промотора расположены энхансеры — нуклеотидные последовательности, регулирующие скорость транскрипции. Некоторые транс-факторы, связываясь с энхансерами, усиливают или подавляют транскрипцию. К числу таких транс-факторов относятся активированные цитоплазматические рецепторы стероидных и тиреоидных гормонов (см. гл. 23, п. II.В.1.в), а также фосфорилированные или дефосфорилированные белки-посредники, образующиеся при взаимодействии гормонов с мембранными рецепторами. Регуляторные элементы генома определяют тканевую специфичность механизмов гормональной регуляции.

IV. Генетические дефекты и эндокринные болезни

А. Многие эндокринные болезни обусловлены мутациями одиночных генов (например — заменой одного нуклеотида). Такие болезни называют моногенными. Главным звеном патогенеза может оказаться нарушение синтеза или транспорта гормона либо дефект рецептора или компонента, осуществляющего внутриклеточную передачу сигнала гормона. В табл. 5.1 перечислены некоторые эндокринные болезни, обусловленные генетическими дефектами. Ниже детально рассмотрены два примера наследственных эндокринных болезней.

Б. Синдромы инсулинорезистентности обычно наследуются аутосомно-рецессивно и включают синдром инсулинорезистентности и acanthosis nigricans типа А и лепречаунизм. Эти болезни обусловлены мутациями гена рецептора инсулина. Точечные мутации в последовательности, кодирующей альфа-субъединицу рецептора, снижают стабильность мРНК рецептора и нарушают доставку зрелого рецептора к наружной клеточной мембране. В результате уменьшается общее число рецепторов на мембране. Точечные мутации в последовательности, кодирующей бета-субъединицу, обычно понижают активность тирозинкиназы рецептора.

В. Генерализованная резистентность к тиреоидным гормонам — редкий синдром с аутосомно-доминантным наследованием (см. гл. 2, п. IV.Ж.2.а). Уровни свободных T4 и T3 повышены, но содержание ТТГ в сыворотке находится в пределах нормы или увеличено и регулируется тиролиберином. Как правило, генетический дефект — точечная мутация в последовательности, кодирующей гормонсвязывающий домен рецептора тиреоидных гормонов. Этот дефект приводит к ухудшению связывания гормона с рецептором и, соответственно, к снижению активности гормон-рецепторных комплексов.

V. Молекулярные основы патогенеза эндокринных опухолей

А. Молекулярно-биологические исследования позволили расшифровать многие механизмы онкогенеза, в том числе — механизмы развития гормонально-активных опухолей.

Б. Некоторые СТГ-секретирующие опухоли возникают вследствие мутаций генов G-белков. G-белки опосредуют передачу сигналов от мембранных рецепторов гормонов к внутриклеточным исполнительным системам. Например, субъединица Gsальфа стимулирует аденилатциклазу. В норме взаимодействие Gsальфа с аденилатциклазой происходит только после присоединения гормона к рецептору. Мутация в последовательности, кодирующей Gsальфа, приводит к образованию дефектной Gsальфа, которая функционирует как конститутивный нерегулируемый активатор аденилатциклазы. Постоянный высокий уровень активности аденилатциклазы стимулирует опухолевый рост СТГ-секретирующих клеток, что приводит к гиперсекреции СТГ и к развитию акромегалии.

В. Доказано, что синдром МЭН типа I обусловлен дефектом одного из локусов 11q. Анализ полиморфизма длин рестрикционных фрагментов ДНК у членов семей с МЭН типа I позволит в ближайшем будущем идентифицировать мутантный ген.

VI. Рекомбинантные гормоны. Методы генной инженерии позволяют получать в промышленных количествах гормоны человека: инсулин, СТГ, ЛГ, ФСГ, ТТГ и их аналоги. Рекомбинантные гормоны широко применяются в экспериментальной и клинической эндокринологии.

VII. Основные направления исследований

А. Идентификация генов гормонов, генов рецепторов гормонов и генов других молекул, участвующих в гормональной регуляции функций организма.

Б. Изучение механизмов передачи сигналов гормонов.

В. Идентификация генетических дефектов, обусловливающих эндокринные болезни.

Г. Выявление молекулярно-генетических маркеров предрасположенности к эндокринным болезням.

Д. Разработка методов прогнозирования и ранней диагностики эндокринных болезней.

Е. Разработка новых методов лечения эндокринных болезней (поиск блокаторов и стимуляторов секреции гормонов; генотерапия).


Литература

1. Antonarakis SE. Diagnosis of genetic disorders at the DNA level. New Engl J Med 320:153, 1989.

2. Beato M. Gene regulation by steroid hormones. Cell 56:335, 1989.

3. Chin WW. Biosynthesis and secretion of peptide hormones. In KL Becker (ed.), Principles and Practice of Endocrinology and Metabolism. Philadelphia: Lippincott, 1990. P. 14.

4. Evans RM. The steroid and thyroid hormone receptor superfamily. Science 240:889, 1988.

5. Habener JF. Genetic control of hormone formation. In JD Wilson, DW Foster (eds), Williams Textbook of Endocrinology. Philadelphia: Saunders, 1992. P. 9.

6. Kahn CR, et al. Mechanism of action of hormones that act at the cell surface. In JD Wilson, DW Foster (eds), Williams Textbook of Endocrinology. Philadelphia: Saunders, 1992. Pp. 91.

7. Lazar MA, Chin WW. Nuclear thyroid hormone receptors. J Clin Invest 86:1777, 1990.

8. Lewin BM. Gene IV. New York: Wiley, 1990.

9. Maniatis T, et al. Regulation of inducible and tissue-specific gene expression. Science 236:1227, 1987.

10. Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371, 1989.


II. Нарушения функции гипоталамо-гипофизарной системы

Глава 6. Болезни аденогипофиза

Х. Карлсон

I. Гормоны аденогипофиза

А. Классификация, структура и функции

1. Семейство СТГ. К нему относятся СТГ и пролактин, а также гормон, образующийся в плаценте, — плацентарный лактоген. Все эти гормоны состоят из одной негликозилированной полипептидной цепи и характеризуются значительным сходством первичной структуры.

а. СТГ синтезируется в соматотропных клетках, имеет молекулярную массу 22 000 и содержит 191 аминокислоту. Физиологические эффекты СТГ принято разделять на прямые и непрямые. Прямые эффекты СТГ: стимуляция синтеза и секреции ИФР в печени и других органах и тканях, стимуляция липолиза в жировой ткани и стимуляция продукции глюкозы в печени. Непрямые эффекты СТГ — это его рост-стимулирующее и анаболическое действие. Эти эффекты опосредуются ИФР-I. Основным источником ИФР-I является печень. ИФР-I стимулирует рост кости, хряща и мягких тканей. Непрямые эффекты СТГ подавляются глюкокортикоидами.

б. Пролактин синтезируется в лактотропных клетках, имеет молекулярную массу 22 500 и содержит 198 аминокислот. Главная мишень пролактина — молочные железы. Пролактин стимулирует рост молочных желез во время беременности и лактацию после родов. Во время беременности лактогенный эффект пролактина блокируется эстрогенами и прогестероном. Рецепторы пролактина обнаружены в гипоталамусе, печени, яичках, яичниках, но действие пролактина на эти органы изучено недостаточно. Гиперпролактинемия угнетает гипоталамо-гипофизарно-гонадную систему и является частой причиной бесплодия у женщин. Недавно показали, что рецепторы пролактина присутствуют на T-лимфоцитах и что пролактин влияет на иммунные реакции.

2. Семейство гликопротеидных гормонов включает аденогипофизарные гормоны ЛГ, ФСГ и ТТГ, а также плацентарный гормон ХГ. Эти гормоны состоят из двух сильно гликозилированных полипептидных цепей (субъединиц) — альфа и бета. У всех гормонов субъединицы альфа идентичны:они включают по 92 аминокислоты, расположенных в одинаковой последовательности. Напротив, последовательности аминокислот в субъединицах бета различаются. Именно эти различия определяют специфичность действия гликопротеидных гормонов на ткани-мишени. Молекулярная масса ЛГ, ФСГ, ТТГ и ХГ неодинакова и зависит в первую очередь от количества углеводных остатков.

а. ЛГ и ФСГ синтезируются в гонадотропных клетках. У обоих гормонов субъединица бета включает 115 аминокислот, а молекулярная масса составляет соответственно 29 400 и 32 600. ЛГ и ФСГ регулируют синтез и секрецию половых гормонов и гаметогенез.

1) В яичниках ЛГ стимулирует овуляцию и секрецию прогестерона. Рецепторы ЛГ и ХГ присутствуют на клетках внешней оболочки и гранулярного слоя фолликулов и на интерстициальных клетках. ФСГ стимулирует секрецию эстрогенов, рост и созревание фолликулов. Рецепторы ФСГ имеются только на клетках гранулярного слоя.

2) В яичках ЛГ стимулирует секрецию тестостерона. Рецепторы ЛГ и ХГ присутствуют только на клетках Лейдига. ФСГ не влияет на синтез андрогенов, но необходим для сперматогенеза. Рецепторы ФСГ обнаружены только на клетках Сертоли.

б. ТТГ синтезируется в тиреотропных клетках, имеет молекулярную массу 30 500; субъединица бета включает 112 аминокислот. Основная роль ТТГ — стимуляция синтеза тиреоидных гормонов. ТТГ контролирует почти все этапы синтеза, в том числе — присоединение неорганического йода к тиреоглобулину и образование T3 и T4 из моно- и дийодтирозина.

3. Семейство производных проопиомеланокортина. Кортикотропные клетки аденогипофиза секретируют несколько гормонов: АКТГ, альфа- и бета-МСГ, бета- и гамма-липотропины, а также эндорфины. Все эти гормоны содержат гептапептид Мет-Глу-Гис-Фен-Арг-Трп-Гли и образуются из крупной молекулы-предшественника — проопиомеланокортина (молекулярная масса 31 000).

а. АКТГ имеет молекулярную массу 4500 и содержит 39 аминокислот. АКТГ стимулирует синтез гормонов в коре надпочечников, в первую очередь — синтез глюкокортикоидов в пучковой и сетчатой зонах. Выброс АКТГ из кортикотропных клеток или введение большой дозы АКТГ может вызвать кратковременный подъем уровня альдостерона. Еще один эффект АКТГ — стимуляция синтеза меланина в меланоцитах. По-видимому, это служит причиной гиперпигментации при синдроме Нельсона и первичной надпочечниковой недостаточности.

б. Функции других производных проопиомеланокортина изучены хуже. Установлено, что альфа-МСГ стимулирует синтез меланина в меланоцитах, а гамма-МСГ — синтез альдостерона в коре надпочечников. В опытах на культурах клеток коры надпочечников показали, что бета-липотропин стимулирует синтез кортикостероидов, причем эффект бета-липотропина опосредуется рецепторами АКТГ.

Б. Регуляция секреции гормонов аденогипофиза

1. Система обратной связи. ТТГ, АКТГ и оба гонадотропных гормона — ЛГ и ФСГ — стимулируют секрецию гормонов в эндокринных железах-мишенях. В свою очередь, гормоны желез-мишеней подавляют секрецию соответствующих аденогипофизарных гормонов. Например, повышение уровня кортизола в крови тормозит секрецию АКТГ. Такие же связи существуют между тиреоидными гормонами и ТТГ, между половыми и гонадотропными гормонами. Гормоны, подавляющие секрецию СТГ и пролактина, пока не обнаружены, хотя недавно было установлено, что ИФР-I тормозит секрецию СТГ.

2. Либерины и статины. Секреторная активность клеток аденогипофиза зависит не только от уровня гормонов эндокринных желез-мишеней. Важнейшую роль в регуляции секреции аденогипофизарных гормонов играет гипоталамус. В ядрах гипоталамуса образуются пептидные гормоны — либерины и статины, поступающие в воротную систему гипофиза:

а. Тиролиберин стимулирует секрецию ТТГ и пролактина.

б. Гонадолиберин стимулирует секрецию ЛГ и ФСГ.


Дата добавления: 2015-09-29; просмотров: 18 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.022 сек.)







<== предыдущая лекция | следующая лекция ==>