Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Ядерные реакции - это искусственные превращения атомных ядер, вызванные их взаимодействием с частицами ( протонами, нейтронами, альфа-частицами, гамма-частицами) или другими ядрами.



ЯДЕРНЫЕ РЕАКЦИИ - это искусственные превращения атомных ядер, вызванные их взаимодействием с частицами (протонами, нейтронами, альфа-частицами, гамма-частицами) или другими ядрами.

Условие, когда протекание ядерной реакции становится возможным:

- когда ядро и частица (или другое ядро) сближаются на расстояния, при которых начинают действовать ядерные силы.

Так как в реакцию могут вступать ядро и положительно заряженная частица (протон), то необходимо преодолеть возникающие между ними силы отталкивания. Это возможно при больших скоростях частиц.

Такие скорости достигаются в ускорителях элементарных частиц.

Источниками заряженных частиц для проведения ядерных реакций могут быть:

- естественные радиоактивные элементы

- ускорители элементарных частиц

- космическое излучение.

 

Как происходят ядерные реакции?

Превращения ядер сопровождается изменением их внутренней энергии (энергии связи).

Разность сумм энергии покоя ядер и частиц до реакции и после реакции называется энергетическим выходом ядерной реакции.

Расчет энергетического выхода ядерной реакции:

- рассчитать сумму масс (m1) ядер и частиц до реакции;

- рассчитать сумму масс (m2) ядер и частиц после реакции;

- рассчитать изменение массы

- рассчитать энергетический выход реакции, т.е. изменение энергии равно произведению изменения массы на квадрат скорости света. При ядерных реакциях всегда выполняются законы сохранения массовых и зарядовых чисел.

 

Ядро урана - 235 имеет форму шара. Поглотив нейтрон, ядро возбуждается и начинает деформироваться.

Оно растягивается из стороны в сторону до тех пор, пока кулоновские силы отталкивания между протонами не начнут преобладать над ядерными силами притяжения. После этого ядро разрывается на две части и осколки разлетаются со скоростью 1/30 скорости света. При делении ядра образуются еще 2 или 3 нейтрона.

Появление нейтронов объясняется тем, что число нейтронов в осколках оказывается больше, чем это допустимо. Имеющие огромную скорость разлетающиеся осколки тормозятся окружающей средой.

Кинетическая энергия осколков превращается во внутреннюю энергию среды, которая нагревается.

Таким образом, деление ядер урана сопровождается выделением большого количества энергии.

ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ - это процесс, в котором одна проведенная реакция вызывает последующие реакции такого же типа.



При делении одного ядра урана образовавшиеся нейтроны могут вызвать деления других ядер урана, при этом число нейтронов нарастает лавинообразно Отношение числа образовавшихся нейтронов в одном акте деления к числу таких нейтронов в предыдущем акте деления называется коэффициентом размножения нейтронов k.

При k меньше 1 реакция затухает, т.к. число поглщенных нейтронов больше числа вновь образовавшихся.

При k больше 1 почти мгновенно происходит взрыв.

При k равном 1 идет управляемая стационарная цепная реакция.

Цепная реакция сопровождается выделением большого количества энергии..

Для осуществлении цепной реакции не получается использовать любые ядра, делящиеся под влиянием нейтронов.

 

Используемый в качестве топлива для атомных реакторов химический элемент уран состоит в природе из двух изотопов: урана-235 и урана - 238.

 

В природе изотопы урана-235 составляют всего лишь 0,7% от всего запаса урана, однако именно они пригодны для проведения цепной реакции, т.к. делятся под влиянием медленных нейтронов.

 

Ядра урана-238 могут делиться лишь под влиянием нейтронов большой энергии (быстрых нейтронов). Такую энергию имеют только 60% нейтронов, появляющихся при делении ядра урана-238. Примерно только 1 из 5 образовавшихся нейтронов вызывает деление ядра.

 

Условия протекания цепной реакции в уране-235:

 

- минимальное количество топлива (критическая масса), необходимое для проведения управляемой цепной реакции в атомном реакторе

- скорость нейтронов должна вызывать деление ядер урана

- отсутствие примесей, поглощающих нейтроны

 

Критическая масса:

 

- если масса урана мала, нейтроны будут вылетать за его пределы, не вступая в реакцию

- если масса урана велика, возможен взрыв за счет сильного увеличения числа нейтронов

- если масса соответствует критической, протекает управляемая цепная реакция

 

Для урана-235 критическая масса составляет 50 кг (это, например, шар из урана диаметром 9 см). В термоядерную реакцию вступают легкие ядра, а в результате синтеза (слияния) они образуют более тяжелое ядро.

 

Такие термоядерные реакции при температурах в миллионы градусов идут в недрах Солнца, где ядра изотопов водорода, сливаясь вместе, образуют более тяжелое ядро атома гелия, при этом выделяется огромная энергия. Чтобы провести слияние (синтез) ядер, т.е. соединить положительно заряженные ядра в новое ядро, необходимо преодолеть действующие между ними кулоновские (электростатические) силы отталкивания.

Чтобы преодолеть силы отталкивания участвующие в синтезе частицы должны обладать очень большой кинетической энергией, т.е. иметь большую скорость. Большая скорость частиц достигается повышением температуры вещества до миллионов градусов.

Ядерный реакция, происходящая в разогретом веществе называется термоядерной реакцией (синтезом).

При таких температурах вещество может существовать только в виде плазмы (полностью ионизированного газа, состоящего из положительно заряженных ионов и отрицательно заряженных электронов).

Особенность термоядерной реакции - это выделение большого количества энергии.

Как создать новый источник энергии, используя термоядерную реакцию?

И как достичь столь высоких температур, как хранить высокотемпературную плазму?

В настоящее время уже удалось получить энергию термоядерного синтеза:

- это термоядерная или водородная бомба, где проходит неуправляемая термоядерная реакция, имеющая взрывной характер;

- это экспериментальные термоядерные установки ТОКАМАК (созданы в СССР) - тороидальные камеры с магнитными катушками, где идет управляемая термоядерная реакция.

 

Трудности, с которыми столкнулись разработчики ТОКАМАКА:

- удержать вещество, разогретое свыше 10 млн градусов изолированно от стенок - изоляция плазмы от стенок достигается с помощью магнитного поля;

- разогреть вещество до состояния плазмы - этого добиваются пропусканием через вещество электрического тока;

- необходимо обеспечить, чтобы количество теплоты, выделившейся при синтезе, было больше тепла, подводимого к установке для перевода вещества в плазму, для этого рабочее вещество должно быть изолировано от окружающей "холодной" среды.

 

Преимущества использования термоядерного синтеза для получения энергии:

 

- энергия, выделившаяся на один нуклон в результате термоядерной реакции, значительно превышает энергию, выделившуюся на один нуклон в результате деления ядер урана;

- топливом для термоядерных установок является тяжелый водород (нерадиоактивный изотоп водорода), а его много в морской воде;

- нет опасного радиоактивного излучения, и в процессе реакции не будет радиоактивных отходов.

Проблемы использования термоядерного синтеза:

- утечка трития (одного из изотопов водорода, участвующего в реакции)

- радиация нейтронами.


Дата добавления: 2015-08-29; просмотров: 45 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
1.Матем програмир бум назыв разработку способов нахождения экстремумов ф-ции неск переменных при ограничении на эти переменные <>= z=f(x1,x2,..,xn)—extr(1) {фи I (x1,x2,..xn) {<= >= | Цель работы: Решение дифференциальных уравнений I и II порядка с постоянными коэффициентами

mybiblioteka.su - 2015-2024 год. (0.014 сек.)