Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Синтетическая методика

Инструментальные средства организационного моделирования | Процессные потоковые модели | Основные элементы процессного подхода | Выделение и классификация процессов | Проведение предпроектного обследования предприятий | Структурная модель предметной области | Техническая структура | Функциональная методика IDEF0 | Функциональная методика потоков данных | Объектно-ориентированная методика |


Читайте также:
  1. Crown Down-методика (от коронки вниз), от большего к меньшему
  2. Nbsp;   ІІ. Опис приладів і методика вимірювання
  3. Виды учебно-технической документации и методика ее применения
  4. Визуальное распознавание характера и эффективное управление поведением людей – методика «7 радикалов».
  5. ГЛАВА 4. МЕТОДИКА ФОРМИРОВАНИЯ целевых ПРОЕКТОВ
  6. ГЛАВА 4. МЕТОДИКА ФОРМИРОВАНИЯ целевых ПРОЕКТОВ
  7. Действенно-синтетическая модель сновидений

Как можно видеть из представленного обзора, каждая из рассмотренных методик позволяет решить задачу построения формального описания рабочих процедур исследуемой системы. Все методики позволяют построить модель "как есть" и "как должно быть". С другой стороны, каждая из этих методик обладает существенными недостатками. Их можно суммировать следующим образом: недостатки применения отдельной методики лежат не в области описания реальных процессов, а в неполноте методического подхода.

Функциональные методики в целом лучше дают представление о существующих функциях в организации, о методах их реализации, причем чем выше степень детализации исследуемого процесса, тем лучше они позволяют описать систему. Под лучшим описанием в данном случае понимается наименьшая ошибка при попытке по полученной модели предсказать поведение реальной системы. На уровне отдельных рабочих процедур их описание практически однозначно совпадает с фактической реализацией в потоке работ.

На уровне общего описания системы функциональные методики допускают значительную степень произвола в выборе общих интерфейсов системы, ее механизмов и т.д., то есть в определении границ системы. Хорошо описать систему на этом уровне позволяет объектный подход, основанный на понятии сценария использования. Ключевым является понятие о сценарии использования как о сеансе взаимодействия действующего лица с системой, в результате которого действующее лицо получает нечто, имеющее для него ценность. Использование критерия ценности для пользователя дает возможность отбросить не имеющие значения детали потоков работ и сосредоточиться на тех функциях системы, которые оправдывают ее существование. Однако и в этом случае задача определения границ системы, выделения внешних пользователей является сложной.

Технология потоков данных, исторически возникшая первой, легко решает проблему границ системы, поскольку позволяет за счет анализа информационных потоков выделить внешние сущности и определить основной внутренний процесс. Однако отсутствие выделенных управляющих процессов, потоков и событийной ориентированности не позволяет предложить эту методику в качестве единственной.

Наилучшим способом преодоления недостатков рассмотренных методик является формирование синтетической методики, объединяющей различные этапы отдельных методик. При этом из каждой методики необходимо взять часть методологии, наиболее полно и формально изложенную, и обеспечить возможность обмена результатами на различных этапах применения синергетической методики. В бинес-моделировании неявным образом идет формирование подобной синергетической методики.

Идея синтетической методики заключается в последовательном применении функционального и объектного подхода с учетом возможности реинжиниринга существующей ситуации.

Рассмотрим применение синтетической методики на примере разработки административного регламента.

При построении административных регламентов выделяются следующие стадии:

  1. Определение границ системы. На этой стадии при помощи анализа потоков данных выделяют внешние сущности и собственно моделируемую систему.
  2. Выделение сценариев использования системы. На этой стадии при помощи критерия полезности строят для каждой внешней сущности набор сценариев использования системы.
  3. Добавление системных сценариев использования. На этой стадии определяют сценарии, необходимые для реализации целей системы, отличных от целей пользователей.
  4. Построение диаграммы активностей по сценариям использования. На этой стадии строят набор действий системы, приводящих к реализации сценариев использования;
  5. Функциональная декомпозиция диаграмм активностей как контекстных диаграмм методики IDEF0.
  6. Формальное описание отдельных функциональных активностей в виде административного регламента (с применением различных нотаций).

Лекция 7

Лекция 11: Унифицированный язык визуального моделирования Unified Modeling Language (UML)

Диаграммы в UML. Классы и стереотипы классов. Ассоциативные классы. Основные элементы диаграмм взаимодействия — объекты, сообщения. Диаграммы состояний: начального состояния, конечного состояния, переходы. Вложенность состояний. Диаграммы внедрения: подсистемы, компоненты, связи. Стереотипы компонент. Диаграммы размещения.

Существует множество технологий и инструментальных средств, с помощью которых можно реализовать в некотором смысле оптимальный проект ИС, начиная с этапа анализа и заканчивая созданием программного кода системы. В большинстве случаев эти технологии предъявляют весьма жесткие требования к процессу разработки и используемым ресурсам, а попытки трансформировать их под конкретные проекты оказываются безуспешными. Эти технологии представлены CASE-средствами верхнего уровня или CASE-средствами полного жизненного цикла (upper CASE tools или full life-cycle CASE tools). Они не позволяют оптимизировать деятельность на уровне отдельных элементов проекта, и, как следствие, многие разработчики перешли на так называемые CASE-средства нижнего уровня (lower CASE tools). Однако они столкнулись с новой проблемой — проблемой организации взаимодействия между различными командами, реализующими проект.

Унифицированный язык объектно-ориентированного моделирования Unified Modeling Language (UML) явился средством достижения компромисса между этими подходами. Существует достаточное количество инструментальных средств, поддерживающих с помощью UML жизненный цикл информационных систем, и, одновременно, UML является достаточно гибким для настройки и поддержки специфики деятельности различных команд разработчиков.

Мощный толчок к разработке этого направления информационных технологий дало распространение объектно-ориентированных языков программирования в конце 1980-х — начале 1990-х годов. Пользователям хотелось получить единый язык моделирования, который объединил бы в себе всю мощь объектно-ориентированного подхода и давал бы четкую модель системы, отражающую все ее значимые стороны. К середине девяностых явными лидерами в этой области стали методы Booch (Grady Booch), OMT-2 (Jim Rumbaugh), OOSE — Object-Oriented Software Engineering (Ivar Jacobson). Однако эти три метода имели свои сильные и слабые стороны: OOSE был лучшим на стадии анализа проблемной области и анализа требований к системе, OMT-2 был наиболее предпочтителен на стадиях анализа и разработки информационных систем, Booch лучше всего подходил для стадий дизайна и разработки.

Все шло к созданию единого языка, который объединял бы сильные стороны известных методов и обеспечивал наилучшую поддержку моделирования. Таким языком оказался UML.

Создание UML началось в октябре 1994 г., когда Джим Рамбо и Гради Буч из Rational Software Corporation стали работать над объединением своих методов OMT и Booch. Осенью 1995 г. увидела свет первая черновая версия объединенной методологии, которую они назвали Unified Method 0.8. После присоединения в конце 1995 г. к Rational Software Corporation Айвара Якобсона и его фирмы Objectory, усилия трех создателей наиболее распространенных объектно-ориентированных методологий были объединены и направлены на создание UML.

В настоящее время консорциум пользователей UML Partners включает в себя представителей таких грандов информационных технологий, как Rational Software, Microsoft, IBM, Hewlett-Packard, Oracle, DEC, Unisys, IntelliCorp, Platinum Technology.

UML представляет собой объектно-ориентированный язык моделирования, обладающий следующими основными характеристиками:

UML — это стандартная нотация визуального моделирования программных систем, принятая консорциумом Object Managing Group (OMG) осенью 1997 г., и на сегодняшний день она поддерживается многими объектно-ориентированными CASE-продуктами.

UML включает внутренний набор средств моделирования (модулей?) ("ядро"), которые сейчас приняты во многих методах и средствах моделирования. Эти концепции необходимы в большинстве прикладных задач, хотя не каждая концепция необходима в каждой части каждого приложения. Пользователям языка предоставлены возможности:


Дата добавления: 2015-10-24; просмотров: 36 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Сравнение существующих методик| Синтаксис и семантика основных объектов UML

mybiblioteka.su - 2015-2024 год. (0.011 сек.)