Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Г. Транспорт аминокислот в клетки

Тема 9.8. БИОСИНТЕЗ ЗАМЕНИМЫХ АМИНОКИСЛОТ | РОЛЬ ФОЛИЕВОЙ КИСЛОТЫ | ТЕМА 9.10. ОБМЕН МЕТИОНИНА. РЕАКЦИИ ТРАНСМЕТИЛИРОВАНИЯ | ТЕМА 9.11. ОБМЕН ФЕНИЛАЛАНИНА, ТИРОЗИНА И ГИСТИДИНА В РАЗНЫХ ТКАНЯХ | В печени фенилаланинметаболизируется двумя путями. Большая часть не использованного для синтеза белков Фен (до 80%) превращается в тирозин | ТЕМА 9.13. БИОГЕННЫЕ АМИНЫ: СИНТЕЗ, ИНАКТИВАЦИЯ, БИОЛОГИЧЕСКАЯ РОЛЬ | Образование и роль соляной кислоты | Механизм активации пепсина | Нарушения переваривания белков в желудке | Активация панкреатических ферментов |


Читайте также:
  1. D15.0 Доброкачественные новообразования других и неутонченных органов грудной клетки
  2. I. Воздействие автомобильного транспорта на окружающую среду.
  3. II. Воздействие авиатранспорта на окружающую среду.
  4. III. Воздействие железнодорожного транспорта на окружающую среду.
  5. III. Организация работы ПДН территориальных органов МВД России на окружном и региональном уровнях, Восточно-Сибирского, Забайкальского линейных управлений МВД России на транспорте
  6. Авиационный транспорт
  7. Автоматизированная система транспортеров

Аминокислоты, образовавшиеся при переваривании белков, быстро всасываются в кишечнике. Транспорт их осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30-50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Всасывание L-аминокислот (но не D-изомеров) - активный процесс, требующий затраты энергии. Аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь (рис. 9-4). Перенос через щёточную кайму осуществляется целым рядом переносчиков, многие из которых действуют при участии Nа+-зависимых механизмов симпорта, подобно переносу глюкозы (см. раздел 7).

Различная скорость проникновения аминокислот через мембраны клеток указывает на наличие транспортных систем, обеспечивающих перенос аминокислот как через внешнюю плазматическую мембрану, так и через внутриклеточные мембраны. В настоящее время известно по крайней мере пять специфических транспортных систем, каждая из которых функционирует

Рис. 9-4. Механизм всасывания аминокислот в кишечнике. L-аминокислота поступает в энтероцит путём симпорта с ионом Na+. Далее специфическая транслоказа переносит аминокислоту через мембрану в кровь. Обмен ионов натрия между клетками осуществляется путём первично-активного транспорта с помощью Nа++-АТФ-азы.

для переноса определённой группы близких по строению аминокислот:

Причём к числу Nа+-зависимых относятся переносчики аминокислот, входящих в первую и пятую группы, а также переносчик метионина. Независимые от Na+ переносчики специфичны для некоторых нейтральных аминокислот (фенилаланин, лейцин) и аминокислот с катионными радикалами (лизин).

Аминокислоты конкурируют друг с другом за специфические участки связывания. Например, всасывание лейцина (если концентрация его достаточно высока) уменьшает всасывание изолейцина и валина.

Одна из специфических транспортных систем для некоторых нейтральных аминокислот функционирует в кишечнике, почках и, по-видимому, мозге. Она получила название γ-глутамильного цикла (рис. 9-5).

В этой системе участвуют 6 ферментов, один из которых находится в клеточной мембране, а остальные - в цитозоле. Ключевую роль в транспорте аминокислоты играет мембранно-связан-ный фермент γ -глутамилтрансфераза. Этот фермент является гликопротеином и катализирует перенос γ-глутамильной группы от глутатиона (иногда другого γ-глутамильного пептида) на транспортируемую аминокислоту и последующий перенос комплекса в клетку. Глутатион представляет собой трипептид - γ-глутамилцистеинилглицин, который находится во всех тканях животных. Реакция протекает следующим образом (см. схему А на с. 468).

Аминокислота, связанная с γ-глутамильным остатком, оказывается внутри клетки. В следующей реакции происходит отщепление γ-глутамильного

Рис. 9-5. γ -Глутамильный цикл. Система состоит из одного мембранного и пяти цитоплазматических ферментов. Перенос аминокислоты внутрь клетки осуществляется в комплексе с глутамильным остатком глутатиона под действием γ-глутамилтрансферазы. Затем аминокислота освобождается, а γ-глутамильный остаток в несколько стадий превращается в глутатион, который способен присоединять следующую молекулу аминокислоты. Е1 - γ-глутамилтрансфераза; Е2 - у-глутамилциклотрансфераза; Е3 - пептидаза; Е4 - оксопролиназа; Е5 - γ-глутамилцистеинсинтетаза; Е6 - глутатионсинтетаза.

остатка под действием фермента γ-глутамилциклотрансферазы (см. схему Б).

Дипептид цистеинилглицин расщепляется под действием пептидазы на 2 аминокислоты - цис-теин и глицин. В результате этих 3 реакций происходит перенос одной молекулы аминокислоты в клетку (или внутриклеточную структуру). Следующие 3 реакции обеспечивают регенерацию глутатиона, благодаря чему цикл повторяется многократно. Для транспорта в клетку одной молекулы аминокислоты с участием γ-глутамильного цикла затрачиваются 3 молекулы АТФ.


Дата добавления: 2015-09-01; просмотров: 284 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Специфичность действия протеаз| Д. Нарушение переваривания белков и транспорта аминокислот

mybiblioteka.su - 2015-2024 год. (0.006 сек.)