Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

II.3. ДДТ и другие пестициды

ВВЕДЕНИЕ | I. АКСИОМАТИКА И КЛАССИФИКАЦИЯ ЭКОЛОГИЧЕСКИ ОПАСНЫХ ФАКТОРОВ | Некоторые основные законы в изучении экологических проблем | II. ХИМИЧЕСКИЕ ЭКОЛОГИЧЕСКИ ОПАСНЫЕ ФАКТОРЫ | II.1. Тяжелые металлы | Нитрат > хлорид > оксид > карбонат > ортофосфат. | II.2. Диоксины и диоксиноподобные соединения | Результаты анализа тканей диких животных, обитающих в загрязненных зонах в Севезо и прилегающих районах | II.4. Нитриты, нитраты и нитрозосоединения | Концентрация М-нитрозаминов в сигаретном дыме (нг/сигарету). |


Читайте также:
  1. D58. Другие наследственные гемолитические анемии
  2. E 03 Другие формы гипотиреоза
  3. E 22.8 Другие состояния гиперфункции Гипофиза
  4. E 34 Другие эндокринные нарушения синдрома Штейна - Левенталя
  5. G 70 Myasthenia gravis и Другие нарушения нервно-мышечного синапса
  6. G 95 Другие болезни спинного мозга
  7. II.3. Внутренняя энергия и теплоёмкость идеального газа.

По подсчетам специалистов ежегодно от трети до половины мировых запасов продовольствия пожирают или повреждают насекомые, плесневые грибки, грызуны, птицы и другие вредители, которые уничтожают урожай и в поле, и при его сборе, погрузке, транспортировке и хранении. В случае успешной борьбы с насекомыми и болезнями, которые поражают зерновые культуры, ежегодная прибавка урожая составила бы около 200 млн. тонн зерна, что хватило бы для пропитания 1 млрд. человек.

Швейцарский химик Пауль Мюллер, руководитель лаборатории фирмы Тейги" в 1938 году обнаружил замечательные инсектицидные свойства у дихлортрифенилтрихлорэтана (ставшего известным позднее под названием ДДТ) и спустя 10 лет за это открытие был удостоен Нобелевской премии в области биологии и медицины. Действительно, уже первые результаты применения этого "чудо-оружия" были просто ошеломляющими — рост урожайности, внедрение экономичных способов ведения сельского хозяйства, новые эффективные средства борьбы с насекомыми, переносящими инфекции. Во время Второй мировой войны ДДТ был применен против вшей, распространяющих сыпной тиф. В результате это была первая из войн, в которой от тифа погибло меньше людей, чем от пуль противника. Использование ДДТ против комаров — переносчиков малярии резко снизили смертность от этого заболевания. Если еще в 1948 г. только в Индии погибло от малярии более трех миллионов человек, то в 1965 г. в этой стране не было зарегистрировано ни одного случая смерти от малярии. Именно благодаря ДДТ таким образом удалось спасти миллионы жизней и именно за это Мюллер по праву получил Нобелевскую премию.

Однако, спустя два-три десятилетия выявились и негативные экологические последствия необдуманного использования ДДТ и многих других пестицидов. ДДТ — агент, применение которого привело к глобальному загрязнению окружающей среды. Установлено, что влияние ДДТ на среду географически существенно шире, чем территория его непосредственного применения в результате переходов из почвы в воду и воздух, из воздуха в воду и т.д., переноса биотой, воздушными массами и океаническими течениями. Таким образом, сегодня загрязнение природной среды этим инсектицидом приняло повсеместный характер, ДДТ обнаружен даже в Антарктиде.

Проблемы, связанные с ДДТ и другими синтетическими (в частности с хлорированными) пестицидами, можно свести к следующим:

1) развитие резистентности вредителей к этим препаратам;

2) устойчивость пестицидов в среде и накопление их в возрастающих концентрациях в организмах;

3) возрождение вредителей и вторичные вспышки численности;

4) рост материальных затрат на применение пестицидов;

5) нежелательные воздействия на окружающую среду и здоровье человека. В этих аспектах и целесообразно рассмотреть негативные экологические последствия действия подобных соединений.

Популяции насекомых-вредителей изменчивы, их генофонд достаточно динамичен и способен довольно быстро эволюционировать. Обработка пестицидами создает давление естественного отбора, приводящее к устойчивости популяции. При воздействии пестицидов сначала погибают наиболее чувствительные особи, а выживают резистентные, которые дают также более выносливое поколение. Все это происходит очень быстро, так как способность многих насекомых к репродукции просто феноменальна — они могут давать многочисленное потомство через короткие промежутки времени. Таким образом, неоднократные воздействия пестицидов приводят к селекции и размножению линий с высокой устойчивостью именно к тем препаратам, которые созданы для их уничтожения. Известны случаи, когда устойчивость популяции насекомых к химикатам возрастала в десятки тысяч раз. Около 25 основных видов насекомых-вредителей стали устойчивыми ко всем пестицидам. Более того, обретая устойчивость к одному агенту, популяция становится резистентной и к другим, даже не родственным такому агенту веществам, и даже в том случае, если эта популяция не подвергалась их воздействию. Следует отметить, что число видов насекомых, устойчивых к пестицидам возросло за первые 10 лет интенсивного использования пестицидов почти в два раза — с 224 до 428.

Другой аспект проблемы связан с судьбой пестицидов в окружающей среде. Хлорированные (как например ДЦТ, линдан, кепон, алдрин и многие другие) или Нg-, As-, Pb-содержащие пестициды относятся к весьма стабильным. Это означает, что они очень медленно разрушаются (или даже совсем не разрушаются) под действием солнца или бактерий. Об устойчивости пестицида в окружающей среде судят по времени, в течение которого он сохраняется в почве после обработки: быстро разрушающийся — менее 15 недель, умеренно разрушающийся — 15—45 недель, медленно разрушающийся — 45—75 недель и устойчивый — более 75 недель. Период полужизни у ДДТ составляет примерно 20 лет. Такие же элементы, как ртуть и мышьяк полностью не разлагаются — они циркулируют по экосистемам или оказываются захороненными в иле. Подавляющее большинство наиболее известных пестицидов имеют тенденцию накапливаться в живых организмах, причем не только в количествах больших, чем в окружающей среде, но и в концентрациях, возрастающих по мере продвижения по пищевым цепям. Это называется эффектом биологического усиления. Несмотря на то, что сведения о влиянии пестицидов на сообщества организмов и функционирование экосистем ограничены и не систематизированы, отмечено, что ввиду высокой способности к биоаккумуляции и низкой степени разложения, они могут оказывать неблагоприятное влияние на организмы всех трофических уровней, особенно на обладающих высокой чувствительностью первичных продуцентов. Известно, что водоросль кладофора за три дня извлекает из воды столько ДДТ, что его концентрация увеличивается при этом в 3000 раз. Для уничтожения комаров на одном из калифорнийских озер применяли ДДТ. После обработки акватории концентрация ДДТ в воде составила 0,02 ppm (частей/миллион), в планктоне - 10, в планктоноядных рыбах - 900, в хищных рыбах - 2700, а в птицах, питающихся рыбой - 2100 ppm, т.е. содержание ДДТ в тканях птиц, не подвергавшихся непосредственно воздействию инсектицида почти в 100 тысяч раз превышала его концентрацию в воде. Один килограмм жира тюленей, обитающих у британских берегов, содержит 10-40 мг ДДТ. Нечувствительные к действию ДДТ, дождевые черви являются своеобразными ловушками этого вещества, активно поглощая его из почвы и накапливая в организме. При изучении накопления ДДТ и его переходов по звеньям трофической цепи на примере экосистемы озера Мичиган было обнаружено, что донный ил содержит 0,014 мг/кг, придонно-питающиеся ракообразные - 0,41, различные виды рыб — 3-6, и жировая ткань чаек, питающихся этой рыбой - свыше 2400 мг/кг. Немецкие ученые Даймен и Хейс приводят следующий расчет, в основе которого лежит простое правило, согласно которому в каждом последующем звене пищевой цепи содержание ДДТ увеличивается в 10 раз: ил - х 1, водные растения - х 10, дафнии и другие рачки - х 100, мелкие рыбы - х 1000, хищные рыбы - х 10000. Это демонстративный пример последовательного концентрирования ДДТ. Простая классификация пестицидов для определения их безопасности представлена в таблице 13.

Таблица 13


Дата добавления: 2015-09-02; просмотров: 216 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Уровни ТХДД в женском грудном молоке| Показатели*, характеризующие относительную токсичность, устойчивость и биоаккумуляцию некоторых пестицидов.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)