Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Ионизация газов

Читайте также:
  1. Бытовая газовая аппаратура
  2. Взрывная безопасность смесей с воздухом горючих газов, паров и взвешенных в воздухе горючих твердых частиц (пыли)
  3. ВИЗНАЧЕННЯ ВМІСТУ БРОМУ У ПІДЗЕМНИХ ВОДАХ НАФТОВИХ І ГАЗОВИХ РОДОВИЩ
  4. ВИЗНАЧЕННЯ ВМІСТУ ЙОДУ У ПІДЗЕМНИХ ВОДАХ НАФТОВИХ І ГАЗОВИХ РОДОВИЩ
  5. ВИЗНАЧЕННЯ СУЛЬФАТ-ІОНУ У ПІДЗЕМНИХ ВОДАХ НАФТОВИХ І ГАЗОВИХ РОДОВИЩ. ВИКОРИСТАННЯ ВМІСТУ СУЛЬФАТІВ У ВОДАХ ДЛЯ ОЦІНКИ ГЕОХІМІЧНИХ УМОВ У НАДРАХ
  6. Встроенным газовым источником давления
  7. Вытеснение нефти закачкой углеводородных и сжиженных газов.

Отрыв электрона от атома (ионизация газа) требует затраты определенной энергии - энергии ионизации. Она зависит от строения атома и поэтому различна для разных
веществ.

 

После прекращения действия ионизатора число ионов в газе с течением времени уменьшается и конце концов ионы исчезают вовсе. Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они воссоединяются в нейтральный атом. Точно так же при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба они превратятся в нейтральные атомы. Это процесс взаимной ионизации ионов называется рекомбинацией ионов.

При рекомбинации положительного иона и электрона или двух ионов высвобождается определенная энергия, равная энергии, затраченной на ионизацию. Она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации). Если концентрация положительных и отрицательных ионов велика, то и число ежесекундно происходящих актов рекомбинации будет большим, и свечение рекомбинации может быть очень сильным. Излучение света при рекомбинации является одной из причин свечения многих форм газового разряда.

 

 

Несамостоятельный и самостоятельный разряды в газах

Соберем электрическую цепь, содержащую источник тока, вольтметр V, амперметр A и две металлические пластины, разделенные воздушным промежутком (рис. 1).

Рис. 1

Если поместить вблизи воздушного промежутка ионизатор D, то в цепи возникнет электрический ток. исчезающий с прекращением действия ионизатора. Рекомбинация ионов происходит и во время действия ионизатора, но при этом наступает динамическое равновесие между возникающими и рекомбинирующими ионами, когда число пар ионов в единице объема не изменяется.

Электрический ток в газе с несамостоятельной проводимостью называется несамостоятельным газовым разрядом.

График зависимости силы разрядного тока от разности потенциалов (напряжения) между электродами при неизменной интенсивности ионизатора — вольт-амперная характеристика газового разряда — приведен на рисунке 2. Интенсивность ионизации измеряется количеством ионов, возникших под действием ионизатора в единице объема пара за единицу времени. На графике можно выделить несколько характерных областей.

Рис. 2

На участке 0a соблюдается закон Ома, затем пропорциональность нарушается (участок ab), и начиная с U н сила тока не изменяется. Наибольшую силу тока, возможную при действии данного ионизатора, называют током насыщения I нас. При токе насыщения все возникающие ионы долетают до электродов, не успев рекомбинировать. Значение силы тока насыщения определяется свойствами ионизатора. Для увеличения I нас нужно увеличить интенсивность ионизации.

Рассмотрим участок cd. При достаточно больших напряжениях кинетическая энергия электрона возрастает настолько, что при его соударении с нейтральной молекулой газа от нее отщепляется внешний электрон. Это явление называется ударной ионизацией молекул газа. Разность потенциалов, которую должен пройти электрон в ускоряющем электрическом поле для того, чтобы приобрести достаточную для работы ионизации энергию, называют потенциалом ионизации. Освободившиеся электроны ускоряются в электрическом поле и в свою очередь ионизируют сталкивающиеся с ними нейтральные молекулы газа. Число электронов и ионов в газе лавинообразно растет, а вместе с ним растет и разрядный ток. При еще больших значениях напряжения ударную ионизацию вызывают и ионы. Теперь к обоим электродам движутся лавины: к катоду — положительная ионная, к аноду — электронная. Эти лавины обусловливают самостоятельную проводимость газа. Участок cd графика характеризует самостоятельный газовый разряд, который может существовать без внешнего ионизатора. Непрерывная убыль носителей тока, происходящая вследствие нейтрализации ионов у электродов, поглощения электронов анодом и рекомбинации ионов, восполняется в этом случае за счет электрического поля, а не за счет ионизатора.

При всяком самостоятельном разряде имеет место ионизация газа электронными ударами, но наличие только ионизации электронным ударом еще не приводит к самостоятельному разряду. Для существования самостоятельного разряда необходимо, чтобы в газе происходили и другие процессы, производящие новые электроны взамен ушедших на анод. Такими процессами могут быть вторичная эмиссия электронов с катода (выбивание электронов из катода разогнанными в электрическом поле положительными ионами), ионизация ионами и внутренняя фотоионизация (излучение, сопровождающее рекомбинацию ионов, может быть поглощено нейтральными атомами, в результате чего некоторые из них ионизируются).

Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») — в физике и химии полностью или частично ионизированный газ, который может быть как квазинейтральным, так и неквазинейтральным. Плазма иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.

Слово «ионизированный» означает, что от электронных оболочек значительной части атомов или молекул отделён по крайней мере одинэлектрон. Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие смагнитным и электрическим полями. Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году, возможно из-за ассоциации с плазмой крови. Ленгмюр писал:

Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.

Философы античности, начиная с Эмпедокла, утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в современное научное представление о четырёх агрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь.[1] Свойства плазмы изучает физика плазмы.

 

Плазмой называется сильно ионизованный газ, в котором концентрации положитель­ных и отрицательных зарядов практически одинаковы. Различают высокотемпературную плазму, возникающую при сверхвысоких температурах, и газоразрядную плазму, возникающую при газовом разряде. Плазма характеризуется степенью ионизации a — отношением числа ионизованных частиц к полному их числу в единице объема плазмы. В зависимости от величиныa говорят о слабо (a составляет доли процента), умеренно (a — несколько процентов) и полностью (a близко к 100%) ионизованной плазме.

Заряженные частицы (электроны, ионы) газоразрядной плазмы, находясь в ускоряющем электрическом поле, обладают различной средней кинетической энергией. Это означает, что температура Тe электронного газа одна, а ионного T и, — другая, причем Тe>T и. Несоответствие этих температур указывает на то, что газоразрядная плазма является неравновесной, поэтому она называется также неизотермической. Убыль числа заряженных частиц в процессе рекомбинации в газоразрядной плазме восполняется ударной ионизацией электронами, ускоренными электрическим полем. Прекращение действия электрического поля приводит к исчезновению газоразрядной плазмы.

Высокотемпературная плазма является равновесной, или изотермической, т. е. при определенной температуре убыль числа заряженных частиц восполняется в результате термической ионизации. В такой плазме соблюдается равенство средних кинетических энергий составляющих плазму различных частиц. В состоянии подобной плазмы находятся звезды, звездные атмосферы, Солнце. Их температура достигает десятков миллионов градусов.

Условием существования плазмы является некоторая минимальная плотность заря­женных частиц, начиная с которой можно говорить о плазмекак таковой. Эта плотность определяется в физике плазмы из неравенства L >> D, где L— линейный размер системы заряженных частиц, D — так называемый дебаевский радиус экранирования, представляющий собой то расстояние, на котором происходит экранирование кулоновского поля любого заряда плазмы.

Плазма обладает следующими основными свойствами: высокой степенью ионизации газа, в пределе — полной ионизацией; равенством нулю результирующего про­странственного заряда (концентрация положительных и отрицательных частиц в плазме практически одинакова); большой электропроводностью, причем ток в плазме создается в основном электронами, как наиболее подвижными частицами; свечением; сильным взаимодействием с электрическим и магнитным полями; колебаниями элект­ронов в плазме с большой частотой (»108 Гц), вызывающими общее вибрационное состояние плазмы; «коллективным» — одновременным взаимодействием громадного числа частиц (в обычных газах частицы взаимодействуют друг с другом попарно). Эти свойства определяют качественное своеобразие плазмы, позволяющее считать ее особым, четвертым, состоянием вещества.

Изучение физических свойств плазмы позволяет, с одной стороны, решать многие проблемы астрофизики, поскольку в космическом пространстве плазма — наиболее распространенное состояние вещества, а с другой — открывает принципиальные возможности осуществления управляемого термоядерного синтеза. Основным объектом исследований по управляемому термоядерному синтезу является высокотемпературная плазма (»108 К) из дейтерия и трития.

Низкотемпературная плазма (<105К) применяется в газовых лазерах, в термоэле­ктронных преобразователях и магнитогидродинамических генераторах (МГД-генераторах) — установках для непосредственного преобразования тепловой энергии в элект­рическую, в плазменных ракетных двигателях, весьма перспективных для длительных космических полетов.

Низкотемпературная плазма, получаемая в плазмотронах, используется для резки и сварки металлов, для получения некоторых химических соединений (например, галогенидов инертных газов), которые не удается получить другими способами, и т. д.

Плазма в космосе.

В земных условиях из-за сравнительно низкой температуры и высокой плотности земного вещества естественная плазма встречается редко. В нижних слоях атмосферы Земли исключение составляют разве что разряды молнии. В верхних слоях атмосферы на высотах порядка сотен километров существует протяженный слой частично ионизованной плазмы, называемый ионосферой, который создается благодаря ультрафиолетовому излучению Солнца. Наличие ионосферы обеспечивает возможность дальней радиосвязи на коротких волнах, поскольку электромагнитные волны отражаются на определенной высоте от слоев ионосферной плазмы. При этом радиосигналы благодаря многократным отражениям от ионосферы и от поверхности Земли оказываются способными огибать выпуклую поверхность нашей планеты.

 

Во Вселенной основная масса вещества (ок. 99,9%) находится в состоянии плазмы. Солнце и звезды образованы из плазмы, ионизация которой вызывается высокой температурой. Так, например, во внутренней области Солнца, где происходят реакции термоядерного синтеза, температура составляет около 16 млн. градусов. Тонкая область поверхности Солнца толщиной порядка 1000 км, называемая фотосферой, с которой излучается основная часть солнечной энергии, образует плазму при температуре порядка 6000 К. В разреженных туманностях и межзвездном газе ионизация возникает под действием ультрафиолетового излучения звезд.

Над поверхностью Солнца находится разреженная сильно нагретая область (при температуре около одного миллиона градусов), которая носит название солнечной короны. Стационарный поток ядер атомов водорода (протонов), испускаемый солнечной короной, называется солнечным ветром. Потоки плазмы с поверхности Солнца создают межпланетную плазму. Электроны этой плазмы захватываются магнитным полем Земли и образуют вокруг нее (на расстоянии в несколько тысяч километров от поверхности Земли) радиационные пояса. Потоки плазмы, возникающие в результате мощных солнечных вспышек, изменяют состояние ионосферы. Быстрые электроны и протоны, попадая в атмосферу Земли, вызывают в северных широтах появление полярных сияний.

 

 


Дата добавления: 2015-08-13; просмотров: 293 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
You will be dead really soon… или же у нас есть шанс?| Нормативные ссылки

mybiblioteka.su - 2015-2024 год. (0.009 сек.)