Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Технология производства прецизионных деталей

Читайте также:
  1. Amp;** § 2. Возбуждение приказного производства
  2. VI. Инженерное проектирование и технология
  3. VII . Организация производства и накладные расходы
  4. А) издержки производства или обращения
  5. амырды дайындаудағы технологиялық операция
  6. Анализ уровня товарности и рентабельности производства зерна
  7. Анкетный опрос: технология подготовки и проведения

Прецизионные детали - детали, характеризующиеся высокой точностью размеров.

Прецизионное точение (тонкое обтачивание и растачивание, алмазная обработка) характе­ризуется высокими скоростями резания (100—1000 м/мин и более), малыми подачами (0,01—0,15 мм/об) и глубинами резания (0,05—0,3 мм) при высокой виброустойчивости технологической системы. Детали из стали, в процессе обработки которых имеют место ударные нагрузки (при наличии пазов, пересекающих отверстий и др.), а также детали из стали и высокопрочного чугуна высокой твер­дости обрабатывают при более низких скоро­стях резания (до 50 м/мин). В некоторых слу­чаях при обработке деталей из стали и высокопрочного чугуна повышенной твердо­сти, при наличии оборудования высокой жест­кости, мощности и соответствующей частоты вращения шпинделя целесообразно применять резцы, армированные СТМ, скорости резания могут быть увеличены до 150 м/мин и более.

Прецизионное точение обеспечивает полу­чение поверхностей правильной геометриче­ской формы, с точным пространственным рас­положением осей и параметр шероховатости поверхности Ra = 0,63 — 0,063 мкм, вместе с тем этот метод высокопроизводителен.

При растачивании деталей из медных спла­вов резцами, армированными алмазами или композиционными материалами, с использова­нием шпиндельных головок с высокоточными подшипниками можно получить параметр ше­роховатости поверхности Rа = 0,032 — 0,020 мкм, при растачивании деталей из алюминиевых и бронзовых сплавов Ra = 0,063—0,04 мкм. При использовании стандартных шпиндельных головок и тех же условиях можно обеспечить параметр шероховатости поверхности Ra = 0,50-0,16 мкм.

Вследствие малых сечений стружки силы резания и нагрев детали во время обработки незначительны. Это исключает образование большого деформированного поверхностного слоя и позволяет ограничиваться малыми си­лами при закреплении детали для обработки. Точность получаемых размеров 8 —9-го квалитета, а при определенных условиях 5 —7-го квалитета. На отделочно-расточных станках обычно выдерживают допуск 5—15 мкм на диаметре 100 мм, отклонение от круглости и конусообразность — в пределах 3-10 мкм.

Более высокую точность получают при обработке деталей из цветных сплавов, при обработке деталей из стали и чугуна точность ниже, так как в большей степени сказывается влияние износа резца в процессе работы. Точ­ность обработки при растачивании зависит от отношения длины к диаметру обрабатываемой поверхности. При обработке на отделочно-ра­сточных станках отверстия, у которых отно­шение длины к диаметру меньше 2, принято считать короткими, равное 2 — 4 — средними, больше 4 — длинными.

Прецизионное точение часто применяют перед хонингованием, суперфинишированием, притиркой. У точных цилиндрических колес после токарной обработки на вертикальных многошпиндельных полуавтоматах одновре­менно растачивают отверстия и подрезают торцы с допуском 0,015—0,02 мм на диаметр и 0,05 мм на линейные размеры, хонингуют отверстия и суперфинишнруют торцы.

Оборудование. Для прецизионного точения используют станки: отделочно-расточные горизонтальные одно- и многошпиндельные с двусторонним и односторонним расположением шпинделей (головок), с закреплением детали на подвиж­ном столе или в шпинделях; специального на­значения для обработки определенных деталей (наклонные, трех- и четырехсторонние и др.); общего назначения (быстроходные токарные, расточные и многооперационные с ЧПУ), обладающие необходимыми кинематическими параметрами и высокой точностью. Для пре­цизионного точения можно модернизировать обычные токарные и внутришлифовальные станки.

Необходимо обеспечить быстрый и удобный отвод стружки, удобное обслуживание и высокую степень автоматиза­ции управления станком — автоматический останов, переключение и торможение шпинде­лей, ускоренные вспомогательные ходы. Обо­рудование должно иметь устройства: для тон­кого регулирования положения и установки резцов, автоматического измерения детали и автоматической подналадки по мере износа инструмента, автоматический загрузки и вы­грузки деталей.

Инструмент. При презиционном точении применяют расточные, проходные и под­резные резцы с режущими элементами из ал­мазов, композиционных материалов, твердых сплавов, сверхтвердых материалов (гексанита, эльбора), минералокерамики и керметов.

Наиболее удобны для точной установки и регулирования резцы с цилиндрическим стержнем и резцы-вставки с механическим кре­плением пластины режущего материала (твер­дого сплава), либо специально изготовленные пластины с напайным или заделанным алма­зом, СТМ и др. В зависимости от условий обработки резцы и резцы-вставки закрепляют в борштангах или резцовых головках на шпинделе станка, в резцедержателе на столе станка, в промежуточных державках, закре­пленных в резцедержателе токарного станка; в последнем случае можно применять то­карные резцы обычной конструкции. На точ­ность обработки влияет способ закрепления резца и регулирования его на заданный раз­мер.

Способы установки резцов в расточной борштанге различны, все они должны обеспе­чивав возможность точного регулирования резцов и их надежное закрепление.

Борштанги для прецизионного растачива­ния изготовляют из легированных сталей 18ХГТ, 40Х, 20Х и др., цементуют и закали­вают до твердости HRC 56—62. При выполне­нии ответственных прецизионно-расточных операций для повышения вибростойкости борштанги изготовляют из спеченного воль­фрама либо составными — фланец стальной, а стержень твердосплавный.

Установка деталей для обработки. Детали устанавливают по заранее обработанным ба­зам, а иногда по отверстиям, подлежащим окончательной обработке на данной операции. В этом случае применяют приспособления с ловителями, которые после закрепления де­тали удаляют из отверстий. Приспособления с задним или передним и задним направления­ми борштанги во втулках применяют для рас­тачивания отверстий с отношением L/D > 4.

Поступательно-индексирующиеся в гори­зонтальном направлении приспособления слу­жат для предварительного растачивания не­скольких отверстий одним шпинделем или для предварительной и окончательной обработки одного отверстия двумя шпинделями. Нахо­дят применение также комбинированные при­способления для установки различных деталей на многошпиндельных станках.

Детали можно закреплять на шпинделе станка с помощью патронов-цанг и центровых оправок. Приспособления этого ти­па требуют хорошей балансировки и должны обеспечивать равномерное и легкое закрепле­ние детали и ее точную фиксацию.

В отдельных случаях используют комбини­рованные приспособления для одновременно­го растачивания нескольких детален, установленных на столе станка, либо для одновремен­ного растачивания и обтачивания деталей, часть которых устанавливают на столе, а часть — в шпинделе станка. Приспособления такого типа позволяют на одном станке без переналадки получать комплектную продукцию. При прецизионном точении применяют копиры, дополнительные резцедержатели и суппорты, позволяющие обрабатывать фа­сонные поверхности; кроме того можно при­менять приспособления для координатного растачивания.

Схемы и условия обработки поверхностей. При прецизионном растачивании небольших отверстий деталь закрепляют на столе станка (рис. 225), и он совершает движение подачи, а инструмент вращается, так как целесообраз­нее вращать с большой частотой хорошо сба­лансированную борштангу, чем громоздкую деталь.

Внутренние цилиндрические поверхности можно обрабатывать на станках любого типа, а способ закрепления детали и установки инструмента зависит от конфигурации и разме­ров детали, а также типа станка.

При обтачивании наружных цилиндриче­ских поверхностей деталь закрепляют в шпин­деле станка, а резцы — в резцедержателе на столе (рис. 5.30).

Рис.5.30. Схема прецизионного обтачивания наружных поверхностей

Конические поверхности обрабатывают только при вращении детали (рис. 227). Лишь на специальных станках возможна обработка таких поверхностей при установке детали в приспособлении на столе станка. Обработку эллиптических и сферических поверхности также осуществляют с установкой детали в шпинделе станка.

Внутренние и наружные уступы небольших размеров обрабатывают «в упор» в конце ра­бочею хода резца, обрабатывающего примы­кающую к уступу цилиндрическую поверх­ность (рис. 228).

Рис.5.31. Схема обработки внутренних цилиндрических поверхностей с уступами

Для подрезания торцов используют спе­циальные шпиндельные головки с радиальной подачей, либо специальные станки типа OC-6488 с самодействующими шпиндельными головками. Большие уступы подрезают с по­мощью специальных державок при радиаль­ном перемещении резцов,

В зависимости от требуемой точности и параметра шероховатости обработанной поверхности прецизионное растачивание и обтачивание выполняют в один или два перехода; на первом переходе снимают не менее 2/3 при­пуска; второй переход производят при глуби­не резания 0,03—0,3 мм. Резец устанавливают на размер близко к нижнему (при обтачива­нии) или верхнему (при растачивании) предельному размеру, с тем, чтобы более полно использовать допуск на размер.

При применении СОЖ повышается размерная стойкость и уменьшаются параметры шероховатости. Однако из-за трудности огра­ждения от разбрызгивания и отвода СОЖ применение ее на горизонтальных отделочно-расточных станках с подвижным столом ограничено. В табл. 5.2 приведены типовые технологические схемы операций прецизионного точения.

Рекомендуемые режимы резания деталей из различных материалов при прецизионном растачивании и обтачивании без применения смазочно-охлаждающих жидкостей приведены в Справочнике технолога- машиностроителя, т.1, гл.6.

Анализ основных опубликованных материалов показал, что в настоящее время проблема совершенствования технологического обеспечения повышения эксплуатационных свойств прецизионных деталей решается деформационным упрочнением, но имеющийся опыт нельзя привнести на практику без дополнительных исследований.

Таблица 5.2

Разработаны методики определения начальных технологических остаточных напряжений в поверхностных слоях прецизионных деталей при совершенствовании технологического поверхностного пластического деформирования. Например, упрочнение наружной шлифованной поверхности прецизионной детали УЗО ликвидирует начальные растягивающие остаточные напряжения, заменяя их начальными остаточными напряжениями сжатия с максимальной величиной на поверхности в 50…200 МПа при глубине упрочнения 0,3…0,4 мм. Указанное обстоятельство повышает эксплуатационную надежность конструкций по критерию «усталостная прочность» на 17,6%.

 


Дата добавления: 2015-11-26; просмотров: 626 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.009 сек.)