Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Циклические изменения влагалища.

Читайте также:
  1. Артерии. Классификация. Развитие, строение и функции артерий. Взаимосвязь строения оболочек артерий и гемодинамических условий. Возрастные изменения.
  2. Биохимические изменения в плазме крови при ОПН.
  3. БОЛЬШЕ, ЧЕМ УМСТВЕННЫЕ ИЗМЕНЕНИЯ
  4. БОЛЬШИЕ ИЗМЕНЕНИЯ... И ВОЗМОЖНОСТИ
  5. Большие слюнные железы. Особенности строения и развития различных желез. Их регенерация и возрастные изменения
  6. В Кодекс Российской Федерации об административных правонарушениях внесены изменения, усиливающие ответственность за нарушение правил оборота оружия.
  7. В организме больного начался острый гнойный воспалительный процесс. Какие изменения можно ожидать в гемограмме? / Увеличение содержания лейкоцитов.

 

Циклические изменения в организме женщины или менструально-овариальный цикл

В организме женщины каждый месяц происходит изменение слизистой оболочки матки (менструальный цикл) и изменение в яичниках (овариальный цикл). Таким образом, правильно говорить о менструально-овариальном цикле. Менструально–овариальный цикл длится от первого дня менструации до первого дня следующей менструации (от 21 до 35 дней).

 

Овариальный (яичниковый) цикл состоит из созревания фолликула (фолликулогенез), овуляции и образования желтого тела.

 

Под влиянием гормона ФСГ в начале менструального цикла начинается созревание фолликулов в яичнике – так назывемая фолликулиновая фаза менструального цикла. ФСГ воздействует на первичные фолликулы, что приводит к их росту. Обычно в рост вступают несколько первичных фолликулов, но уже ближе к середине цикла один из фолликулов становится "лидером". В процессе роста лидирующего фолликула его клетки начинают вырабатывть гормон эстрадиол, вызывающий утолщение слизистой оболочки матки.

 

В середине менструального цикла, когда фолликул достигает 18-22 мм, гипофиз выделяет лютеинизирующий гормон - ЛГ (овуляторный пик), приводящий к овуляции (разрыв фолликула и выход из него яйцеклетки в брюшную полость). Затем под влиянием опять же ЛГ образуется желтое тело – эндокринная железа, которая выделяет прогестерон - «гормон беременности». Под влиянием прогестерона изменяется слизистая оболочка матки (лютеиновая фаза цикла), что подготавливает ее к беременности. Таким образом бесплодие может возникать и из-за недостаточной функции желтого тела.

 

Менструальный цикл - это изменения слизистой оболочки матки (эндометрия), происходящие вместе с яичниковым циклом. В фолликулиновую фазу цикла происходит утолщение эндометрия (под влиянием гормона эстрадиола). После овуляции гормон желтого тела (прогестерон) вызывает в клетках эндометрия накопление большого количества питательных веществ для эмбриона – лютеиновая фаза цикла.

 

При отсутствии оплодотворения возникает отторжение слизистой оболочки матки – менструация. Вместе с менструацией происходит созревание первичных фолликулов - новый менструальный цикл.

2. Классификация и характеристика иммуноцитов. Их взаимодействие в формировании клеточного и гуморального иммунитета.

Основными клетками, осуществляющими иммунные реакции, явля­ются Т- и В-лимфоциты (и их производные плазмоциты), макрофаги, а также ряд взаимодействующих с ними клеток (тучные клетки, эозинофилы и др.).

Лимфоциты. Популяция лимфоцитов функционально неоднородна. Различают три основных вида лимфоцитов: Т-лимфоциты, В-лимфоциты и так называе­мые нулевые лимфоциты (0-клетки). Лимфоциты развиваются из недиффе­ренцированных лимфоидных костномозговых предшественников и при диф-ференцировке получают функциональные и морфологические признаки (наличие маркеров, поверхностных рецепторов), выявляемые иммунологи­ческими методами. О-лимфоциты (нулевые) лишены поверхностных мар­керов и рассматриваются как резервная популяция недифференцированных лимфоцитов.Т-лимфоциты — самая многочисленная популяция лимфоцитов, составляющая 70—90 % лимфоцитов крови. Они дифференцируются в вилочковой железе — тимусе, поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы — лимфатических узлах (глубокая часть коркового вещества), селезенке, в одиночных и множе­ственных фолликулах различных органов, в которых под влиянием анти­генов образуются Т-иммуноциты (эффекторные) и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. Эти рецеп­торы являются продуктами генов иммунного ответа. Т-лимфоциты обеспечивают клеточный иммунитет, участвуют в регуляции гуморального иммунитета, осуществляют продукцию цитокинов при действии антигенов. В популяции Т-лимфоцитов различают несколько функциональных групп клеток: цитотоксические лимфоциты (Тц), или Т-киллеры (Тк), Т-хелперы (Тх), Т-супрессоры (Тс). Тк участвуют в реак­циях клеточного иммунитета, обеспечивая разрушение (лизис) чужерод­ных клеток и собственных измененных клеток (например, опухолевых кле­ток). Рецепторы позволяют им распознавать белки вирусов и опухолевых клеток на их поверхности. При этом активизация Тц (киллеров) происхо­дит под влиянием антигенов гистосовместимости на поверхности чужерод­ных клеток.Кроме того, Т-лимфоциты участвуют в регуляции гуморального имму­нитета с помощью Тх и Тс. Тх стимулируют дифференцировку В-лимфоцитов. Взаимодействия клеток в иммунном ответе Клеточный иммунный ответ формируется при трансплантации органов и тканей, инфицировании вирусами, злокачественном опухолевом росте. В клеточном иммунитете участвует Тц (Тк), реагирующий с антиге­ном в комплексе с гликопротеинами МНС I класса в плазматической мем­бране клетки-мишени. Цитотоксическая Т-клетка убивает клетку, инфици­рованную вирусом, в том случае, если она узнает с помощью своих рецеп­торов фрагменты вирусных белков, связанные с молекулами МНС класса I на поверхности зараженной клетки. Связывание Тц с мишенями ведет к высвобождению цитотоксическими клетками порообразующих белков, на­зываемых перфоринами, которые полимеризуются в плазматической мембране клетки-мишени, превращаясь в трансмембранные каналы. Как по­лагают, эти каналы делают мембрану проницаемой, что способствует гибе­ли клетки. Гуморальный иммунный ответ обеспечивают макрофаги (ан-тигенпрезентирующие клетки), Тх и В-лимфоциты. Попавший в организм антиген поглощается макрофагом. Макрофаг расщепляет его на фрагменты, которые в комплексе с молекулами МНС класса II появляются на поверхности клетки. Такая обработка антигена мак­рофагом называется процессированием антигена. Для дальнейшего развития иммунного ответа на антиген необходимо участие Тх. Но прежде Тх должны быть активированы сами. Эта активация происходит тогда, когда антиген, обработанный макрофагом, распознается Тх. «Узнавание» Тх-клеткой комплекса «антиген + молекула МНС II клас­са» на поверхности макрофага (т.е. специфичное взаимодействие рецептора этого Т-лимфоцита со своим лигандом) стимулирует секрецию интерлей-кина-1 (ИЛ-1) макрофагом. Под воздействием ИЛ-1 активизируются син­тез и секреция ИЛ-2 Тх-клеткой. Выделение Тх-клеткой ИЛ-2 стимулирует ее пролиферацию. Такой процесс может быть расценен как аутокринная стимуляция, так как клетка реагирует на тот агент, который сама синтези­рует и секретирует. Увеличение численности Тх необходимо для реализации оптимального иммунного ответа. Тх активируют В-клетки путем секреции ИЛ-2. Активация В-лимфоцита происходит также при прямом взаимодей­ствии антигена с иммуноглобулиновым рецептором В-клетки. В-лимфоцит сам процессирует антиген и представляет его фрагмент в комплексе с мо­лекулой МНС II класса на клеточной поверхности. Этот комплекс узнает уже задействованный в иммунной реакции Тх. Узнавание рецептором Тх-клетки комплекса «АГ + молекула МНС II класса» на поверхности В-лим­фоцита приводит к секреции Тх-клеткой интерлейкинов — ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-6, у-ИФН (у-интерферона), под действием которых В-клетка размножается и дифференцируется с образованием плазматических клеток и В-клеток памяти. Так, ИЛ-4 инициирует активацию В-клетки, ИЛ-5 сти­мулирует пролиферацию активированных В-клеток, ИЛ-6 вызывает созре­вание активированных В-клеток и превращение их в плазматические клет­ки, секретирующие антитела. Интерферон привлекает и активирует макро­фаги, которые начинают более активно фагоцитировать и разрушать вне­дрившиеся микроорганизмы. Передача большого количества переработанных макрофагом антигенов обеспечивает пролиферацию и дифференцировку В-лимфоцитов в направ­лении образования плазмоцитов, вырабатывающих специфические антите­ла на конкретный вид антигена. Т-супрессоры (Тс), подавляют способность лимфоцитов участвовать в выработке антител и таким образом обеспечивают иммунологическую толерантность, т. е. нечувствительность к определенным антигенам. Они регулируют количество образующихся плазматических клеток и количество антител, синтезируемых этими клетками. Оказалось, что тормозить выработ­ку антител может и особая субпопуляция В-лимфоцитов, которые получи­ли название В-супрессоров. Показано, что Т- и В-супрессоры могут дей­ствовать подавляюще также на реакции клеточного иммунитета.

 

 

3. межклеточное соединение. В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителиальная, гладкомышечная и др.), между плазмолеммами контактирующих клеток формируются связи — межклеточные контакты.

Типы межклеточных контактов:

1) простой контакт—15—20 нм (связь осуществляется за счет соприкосновения макромолекул гликокаликсов);

2) десмосомный контакт — 0,5 мкм (с помощью скопле­ния электроплотного материала в межмембранном пространстве);

3) плотный контакт (в этих участках межмембранные пространства отсутствуют, а билипидные слои со­седних плаэмолемм сливаются в одну общую бияи-пидную мембрану);

4) щелевидный, или нексусы, — 0,5—3 мкм (обе мемб­раны пронизаны в поперечном направлении белко­выми молекулами, или коннексонами, содержащими гидрофильные каналы, через которые осуществляет­ся обмен ионами и микромолекулами соседних кле­ток, чем и обеспечивается их функциональная связь);

5) синаптический контакт, или синапс, — специфиче­ские контакты между нервными клетками.

 

Билет 45.

 

1. Почки — парные органы, в которых непрерывно об­разуется моча. Расположены на внутренней поверх­ности задней брюшной стенки и имеют форму боба. В ворота почек вступают почечные артерии и выходят почечные вены и лимфатические сосуды. Здесь же на­чинаются мочеотводящие пути: почечные чашечки, почечные лохйнки и мочеточники.

Почка покрыта соединительно-тканной капсулой и серозной оболочкой. Вещество почки подразделя­ется на корковое и мозговое. Корковое вещество тем­но-красного цвета, распо-лагается общим слоем под капсулой. Мозговое вещество более светлой окраски, разделено на 8—12 пирамид. Вершины пирамид, или сосочки, свободно выступают в почечные чашечки. Опору, почки составляет рыхлая соединительная ткань, богатая ретикулярными клетками и ретикуляр­ными волокнами. Паренхима почки представлена эпи­телиальными почечными канальцами, которые при участии кровеносных капилляров образуют нефроны. Нефрон н ачинается почечным тельцем, включающим капсулу, охватывающую клубочек из кровеносных ка­пилляров. На другом конце нефрон переходит в соби­рательную трубку. Собирательная трубка продолжа­ется в сосочковый канал, открывающийся на вершине пирамиды в полость почечной чашечки. В нефроне различают четыре основных отдела: почечное тельце, проксимальный отдел, петлю нефрона с нисходящей и восходящей частями, дистальный отдел. Прокси­мальный и дистальный отделы представлены извиты­ми канальцами нефрона. Нисходящая и восходящая части петли являются прямыми канальцами нефрона. Корковое вещество составляют почечные тельца, проксимальные иллегальные отделы нефронов, имеющие вид извитых канальцев. Мозговое ве­щество состоит из прямых нисходящих и восходящих частей петель нефронов, а также конечных отделов собирательных трубок и сосочковых каналов.

Кровь приносится к почкам по почечным артериям, которые, войдя в почки, распадаются на междолевые артерии, идущие между мозговыми пирамидами. Капсула клубочка по форме напоминает двустенную чашу, в которой, кроме внутреннего листка, имеется наружный листок, а между ними расположена щелевидная полость: полость капсулы, переходящая в про­свет проксимального канальца нефрона. Внутренний листок капсулы проникает между капиллярами сосу­дистого клубочка и охватывает их почти со всех сто­рон. Петля нефрона состоит из нисходящей тонкой части и восходящей толстой части. Нисходящая часть— прямой каналец. Стенка образована плоскими эпите­лиальными клетками, ядросодержащие части которых выбухают в просвет канальца. Цитоплазма у клеток светлая, бедная органеллами. Цитолемма образует глубокие внутренние складки. Через стенку этого ка­нальца происходит пассивное всасывание в кровь во­ды, восходящая часть петли также имеет вид прямого эпителиального канальца, но большего диаметра — до 30 мкм. По строению и роли в реабсорбции этот. каналец близок к дистальному отделу нефрона. Дистальный отдел нефрона представляет собой извитой каналец. Его стенка образована цилиндрическим эпи­телием, участвующим в факультативной реабсорб­ции: обратном всасывании в кровь электролитов.

Мочеобразование- сложный процесс, который осуществляется в нефронах. В почечных тельцах не­фронов происходит первая фаза этого процесса, или фильтрация, в результате чего образуется первичная моча (более 100 л в сутки).

В канальцах нефронов протекает вторая фаза моче­образования, т. е. реабсорбция (облигатная и фа­культативная), следствием чего является качествен­ное и количественное изменение мочи.

Из нее полностью исчезают сахар и белок, а также снижается ее количество (до 1,5—2 л в сутки), что приводит к резкому возрастанию в окончательной моче концентрации выделяемых шлаков: креатиновых тел — в 75 раз аммиака — в 40 раз и т. д. Заключи­тельная (третья) секреторная фаза мочеобразования осуществляется в собирательных трубках, где реак­ция мочи. Становится слабокислой. Все фазы образо­вания мочи — биологические процессы, т. е. резуль­тат активной деятельности клеток нефронов. Юкстагломерулярный а ппарат почек (ЮГА), или околоклубочковый аппарат, секретирует в кровь ренин, который является катализатором образования в орга­низме ангиотензинов, оказывающих сильное сосу­досуживающее действие, а также стимулирует продук­цию гормона альдостерона в надпочечниках. В состав ЮГА входят юкстагломерулярные клетки, плотное пятно и клетки Гурмагтига. Расположением юкстагло-мерулярных клеток является стенка приносящих и вы­носящих артериол под эндотелием. Они Имеют оваль­ную или полигональную форму, а в цитоплазме — крупные секреторные (рениновые) гранулы, которыене окрашиваются обычными гистологическими методами, но дают положительную ШИК-реакцию. Плотное пятно является участком стенки дистального отдела нефрона там, где его прохождение осуществляется рядом с почечным тельцем между приносящей и выносящей артериолами.

Типы нефронов

Различают три типа нефронов — кортикальные нефроны (~85 %) и юкстамедуллярные нефроны (~15 %), субкапсулярные.

Почечное тельце кортикального нефрона расположено в наружной части коркового вещества (внешняя кора) почки. Петля Генле у большинства кортикальных нефронов имеет небольшую длину и располагается в пределах внешнего мозгового вещества почки.

Почечное тельце юкстамедуллярного нефрона расположено в юкстамедуллярной коре, около границы коры почки с мозговым веществом. Большинство юкстамедуллярных нефронов имеют длинную петлю Генле. Их петля Генле проникает глубоко в мозговое вещество и иногда достигает верхушек пирамид

Субкапсулярные находятся под капсулой.

 

2. Ткань — это система клеток и неклеточных структур, обладающая общностью строения, а иногда и проис­хождения, и специализированная на выполнении определенных функций.

1. Характеристика структурных компонентов ткани

Клетки — основные, функционально ведущие ком­поненты тканей. В ткани состоят из нескольких типов клеток. Клеточная популяция — это совокупность клеток данного типа.

Клеточный дифферон, или гистогенетический ряд, — это совокупность клеток данного типа (данной попу­ляция), находящихся на различных этапах дифференцировки.

Производные клеток:

1) симпласты (слияние отдельных клеток, например мышечное волокно);

2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогеиный эпи­телий извитых канальцев семенника);

3) постклеточные образования (эритроциты, тромбо­циты).

Межклеточное вещество — также продукт деятель­ности определенных клеток. Межклеточное вещество состоит из:

1) аморфного вещества;

2) волокон (коллагеноеых, ретикулярных, эластиче­ских).

Межклеточное вещество неодинаково выражено

Классификации,тканей:

1) эпителиальные ткани;

2) соединительные ткани (ткани внутренней среды, опорно-трофические ткани);

3) мышечные ткани;

4) нервная ткань.

Тканевой гомеостаз, или поддержание структурного постоянства тканей

Регенерация тканей Формы регенерации:

1) физиологическая регенерация — восстановление клеток ткани после их естественной гибели (напри­мер, кроветворение);

2) репаративная регенерация — восстановление тка­ней и органов после их повреждения (травм, воспа­лений,хирургических воздействий и т. д.).


Дата добавления: 2015-07-08; просмотров: 421 | Нарушение авторских прав


Читайте в этой же книге: Прямой остеогистогенез. Способ остеогенеза характерен для развития грубоволокнистой ткани при образовании плоских костей, например покровных костей черепа | III. Органы, объединяющие эндокринные и неэндокринные функции | Ротовая полость | Виды Т-лимфоцитов, | Репродукция клеток и ее биологическое значение | Химический состав веществ плазмолеммы: белки, липиды, углеводы. | Поперечно-полосатая скелетная мышечная ткань. | Вегетативная рефлекторная дуга. | Воздухоносные пути | Проведение нервного импульса. |
<== предыдущая страница | следующая страница ==>
В зависимости от механизма уничтожения антигена различают клеточ­ный иммунитет и гуморальный иммунитет.| Значение гистологии для медицины.

mybiblioteka.su - 2015-2024 год. (0.014 сек.)