Читайте также: |
|
б) ламинарная фильтрация жидкостей с неньютоновскими свойствами (кривая 2);
в) малая скорость фильтрации в слабопроницаемых и неоднородных пластах (кривая 2).
Предложены различные аппроксимации нелинейных зависимостей. Например, кривая 1 чаще всего описывается двучленным законом фильтрации
, | (2.62) |
а кривая 2 – законом фильтрыции с предельным градиентом
(2.63) |
где, по данным Е. М. Минского, , а, по данным Б. И. Султанова, ; - эффективный диаметр пор; - предельное напряжение сдвига.
В общем случае к обоим типам кривых применимы степенная и кусочно-линейная аппроксимации
, | (2.64) |
, | (2.65) |
которыми удобно пользоваться при расчетах. Здесь - параметры модели; - характерное значение градиента давления; - безразмерная функция, описывающая ломаную линию (см. рис. 11).
6-04-(НТХ=Ялуторовск)
7-04- => 31-03=2010
§ 6. МГНОВЕННЫЕ УРАВНЕНИЯ СОСТОЯНИЯ И КРИТЕРИИ ПРОЧНОСТИ
1. Характерные мгновенные свойства твердых тел при кратковременном осевом растяжении (сжатии).
На примере кратковременного осевого растяжения (сжатия) цилиндрического образца легко проследить характерные мгновенные свойства твердых тел. На рис. 12 показан общий вид деформационной кривой напряжение – деформация (). Эту кривую условно разбивают на следующие характерные участки:
ОА – участок упругих деформаций, где материал подчиняется линейному закону Гука
(2.66)
с коэффициентом пропорциональности Е, называемым модулем упругости, или модулем Юнга;
АВ – участок пластического течения (или текучести), характеризуемым нарастанием деформации или неизменном напряжении , которое называется пределом упругости или пределом текучести;
ВС – участок упрочнения, где нелинейная зависимость между напряжением и деформацией по аналогии с уравнение (2.56) представима в форме
(2.67)
с коэффициентом , называемым модулем пластичности;
СD – участок разрушения, напряжение называется пределом прочности;
LM – участок разгрузки или повторной нагрузки.
Рис.12. Общий вид деформационной кривой
Если точка L расположена выше точки А, то при полной разгрузке исчезает накопленная упругая деформация и сохраняется деформация пластическая . При повторном нагружении образца его диаграмма мало отличается от кривой MLC, т.е. материал в результате первоначального нагружения выше как бы приобретает дополнительные упругие свойства и повышает предел упругости ; это явление называется упрочнением.
Функцию удобно задавать в аналитической форме, при выборе которой необходимо руководствоваться соображениями удобства при расчетах.
Экспериментально установлено, что степенной закон
(2.68)
является часто наиболее приемлемым, где К и т – константы материала при испытаниях в заданных условиях.
Рис. 13. Деформационные кривые сухой глины
(1, 2, 3 – соответственно при = 92, 29,13 МПа
В качестве примера на рис.13 показаны диаграммы , построенные для высушенной на воздухе глины при нескольких значения всестороннего давления , в табл. 1 – результаты обработки этих диаграмм.
Таблица 1
, МПа | Е, 103, МПа | , МПа | , МПа | K, МПа | m | , % |
0,4 | ||||||
1,1 | 0,4 | |||||
0,4 |
( - общая деформация до разрушения)
Параметры K и т определялись следующим образом. Кривые на рис. 13 перестраивались в логарифмических координатах , и после сравнения полученной прямой с зависимостью определялись искомые параметры.
При осевом нагружении цилиндрического образца изменяется и его поперечный размер, определяемый деформацией .
Величина v, равная отношению абсолютных значений поперечной деформации к продольной в упругой области при осевом нагружении образца, называется коэффициентом Пуассона.
Способность твердых тел сжиматься (уплотняться) или расширяться (разуплотняться) устанавливается диаграммой всестороннее давление – объемная деформация . Экспериментально установлено, что в широком диапазоне давлений зависимость можно принимать в виде
(2.69)
где - модуль объемного сжатия или расширения в зависимости от вида нагружения.
Определение модуля эквивалентно определению коэффициента Пуассона v, так как они связаны зависимостью
. (2.70)
Отсюда, в частности, следует, что для реальных тел коэффициент Пуассона не может превосходить значения 0,5, т.е. 0 < v < 0,5.
Если для какого-либо тела можно принять v = 0,5, то такое идеальное тело принято называть несжимаемым, так как согласно (2.70), .
Рис. 14. Возможные виды деформационных кривых и соответствующие им формы разрушений для образцов горных пород
Деформационная кривая может иметь разнообразный вид в зависимости от свойств материала и внешних условий. По этой кривой находят не только основные механические параметры тела, но и устанавливают определяющее его свойство – меру пластичности. Существуют различные классификации тел. Рекомендуется, например, следующая, довольно полная классификация горных пород [Справочник физических констант горных пород под редакцией С. Кларка]:
а) очень хрупкая (рис.14, кривая 1), когда деформация, по существу, упругая до внезапного разрыва, характеризуемого образованием трещин отрыва перпендикулярно к наименьшему главному напряжению; накопленная при этом деформация не выше 1%;
б) хрупкая (кривая 2), когда наблюдается малая пластическая деформация до разрыва и образуются трещины отрыва и скола; накопленная деформация составляет 1 – 5%;
в) умеренно хрупкая (кривая 3), когда поведение промежуточное между хрупким и текучим, пик обозначает нарушение без общей потери связности, а разрушение происходит в результате образования трещин скола; накопленная деформация составляет 2 – 8%;
г) умеренно пластическая (кривая 4), когда разрушение сопровождается рассеянной деформацией, а накопленная деформация составляет 5 – 10%;
д) идеально пластическая (кривая 5), когда хорошо выражен предел текучести, сменяющийся постоянным однородным течением; деформация до разрыва более 10%;
е) пластическая с упрочнением (кривая 6), когда предел текучести может быть плохо выражен и процесс сопровождается работой упрочнения; деформация до разрыва более 10%.
Принадлежность горной породы к одному из приведенных типов определяет расчетную математическую модель и предельное состояние. В принципе, этой классификацией можно пользоваться при изучении любого твердого тела.
Среднестатистические значения опытных величин , соответствующие различным видам (сжатие, растяжение, изгиб, сдвиг) и условиям (температура, давление, влажность, скорости нагружения и др.) испытаний, принимаются в качестве основных механических параметров при кратковременных нагружениях изотропных твердых тел. Важной задачей экспериментального исследования является установление аналитической зависимости этих параметров от указанных факторов.
Многочисленными испытаниями установлено, что рост всестороннего давления и скорости деформирования способствует увеличение параметров и и переходу от хрупкого поведения к пластическому, а рост температуры и влажности, снижая предел текучести, препятствует образованию трещин и усиливает текучесть без заметного изменения формы деформационной кривой . Особое значение эти зависимости имеют для горных пород.
В практике инженерных расчетов чаще других используется следующая эмпирическая зависимость предельного значения ( или ) от среднего нормального напряжения , предложенная Э. Хоеком:
, (2.71)
где с – значение при ; a, b – константы, являющиеся функциями температуры, влажности и др.
При с = 0 получится зависимость, впервые предложенная Д. Франклином.
Для многих горных пород хорошей аппроксимацией может оказаться линейная зависимость, называемая критерием Мора,
(2.72)
Примером влияния влажности W на механическую прочность пород может служит понтическая глина. Для этой глины линейная аппроксимация (2.72) вполне приемлема до давления =50 МПа, а зависимость параметров с и а от влажности показана ниже.
W, % | ||||
c, МПа | ||||
а | 1,4 | 4,26 | 0,5 |
Инженерные расчеты удобно проводить, когда зависимость параметров с, а, b, равно как и K и т в формуле (2.68), от температуры и влажности принята в аналитической форме. Однако таких общепринятых норм в литературе не предложено. Поэтому необходимо руководствоваться соображениями удобства при расчетах с требуемой точностью. Например, в формуле (2.68) часто бывает удобным фиксировать показатель т, а коэффициент K считать линейной функцией, или экспонентой.
2. Упругое деформирование изотропных тел при сложно-напряженном состоянии.
При сложно-напряженном состоянии упругое деформирование изотропных тел описывается общими уравнениями состояния, называемыми обобщенным законом Гука:
(2.73)
т.е. компоненты девиаторов напряжений и деформаций, среднее нормальное напряжение и относительное изменение объема пропорциональны или в эквивалентной форме:
(2.74)
т.е. компоненты тензора напряжений суть линейные функции компонент тензора деформаций и обратно:
(2.75)
где - модуль сдвига; - коэффициент Ламе. Характерно, что коэффициенты пропорциональности в этих общих уравнения определяют параметрами, получаемым при простых видах нагружения.
На основании уравнений (2.73) и формул (1.21), (1.40) выведено полезное соотношение
, (2.73/)
т.е. интенсивность касательных напряжений Т пропорциональна интенсивности деформаций сдвига Г.
Более сложными уравнениями описывается неупругая деформация. В приложениях обычно пользуются упрощенными теориями пластичности.
Наиболее широкое применение получили уравнения состояния деформационной теории пластичности
(2.76)
или в эквивалентной форме
, (2.77)
и обратная зависимость
, (2.78)
которые являются простым обобщением уравнений (2.73) – (2.75).
В уравнениях (2.76) – (2.78) функция g (Г) в силу соотношения и формулы (2.67) определяется по виду функции , например, подобно формуле (2.68):
.
Функция служит коэффициентом в обратном соотношении : например, для степенного закона (2.68)
,
где .
В случае несжимаемого тела (v = 0,5) уравнения состояния принимают вид
.
В состояния пластического течения (см. рис.12 участок АВ), например, при обобщенном критерии Губера – Мизеса, характеризующим переход к пластическим деформациям,
, (2.79)
в уравнениях (2.76) и (2.77) функцию g (Г) необходимо принять или , где - интенсивность напряжений [см. формулу (1.41)]. В этом случае нельзя однозначно определить компоненты деформации , подобно формуле (2.78), что вполне естественно, если обратить внимание на участок АВ (см. рис. 12), где нет взаимно однозначного соответствия между и .
3. Критерий прочности при кратковременном монотонном нагружении.
Критерий прочности при кратковременном монотонном нагружении – это есть условие перехода какого-либо элемента нагруженного твердого тела в состояние хрупкого разрушения или пластического течения, когда в известной мере исчерпывается несущая способность. При одноосном наряженном состоянии критерий прочности оценивается предельным, или опасным, значением напряжения; например, на рис. 12 это или . При переходе к сложному напряженному состоянию исходят из простейшего естественного предположения: уравнение предельного состояния не должно зависеть от выбора системы координат и должно содержать лишь инварианты, характеризующие напряженное состояние. Согласно выводам лекции 1.2, этими инвариантами будут T – интенсивность касательных напряжений; - среднее нормальное напряжение; - параметр Лоде – Надаи. Поэтому в общем случае критерий прочности определяется некоторой предельной поверхностью
Предложено много различных критериев прочности при сложно-напряженном состоянии изотропных тел. В инженерных расчетах чаще других применяют критерий Шлейхера – Надаи
, (2.80)
где вид функции в правой части устанавливается экспериментально по данным опытов для конкретных материалов.
В частности, при из (2.70) следует критерий Губера – Мизеса (2.79) или эквивалентный ему по форме энергетический критерий. Оба этих критерия основаны на гипотезе, по которой процесс разрушения зависит главным образом от изменения формы элемента тела.
При достижении потенциальной энергией формоизменения элемента тела предельного состояния наступает его разрушение или переход к пластической деформации.
Если , то из условия (2.80) следует обобщенный критерии Мора . Используя формулы разд.2, критерий (2.80) можно сформулировать в терминах максимального касательного и нормального напряжений:
.
Например, относительно главных координатных осей при условии , обобщая соотношение (2.71), можно принять
.
Иногда в качестве критерия разрушения используются ограничения деформаций.
Изучая механическое поведение горных пород, надо иметь в виду присущие им важные особенности: с одной стороны, деформационную и прочностную анизотропию, обусловленную слоистостью, сланцеватостью или направленной трещиноватостью их строения, а с другой – наличием пор или трещин, заполненных пластовой жидкостью, газом или их смесью.
4. Трансверсально-изотропные тела (свойства анизотропии горных пород в плоскости, параллельной напластованию).
При изучении анизотропии горных пород чаще всего ограничиваются изучением свойств горных пород в плоскости, параллельной напластованию, и плоскости, перпендикулярной к напластованию, считаю любое из направлений в этих плоскостях эквивалентным в отношении механических свойств.
Такие тела принято называть трансверсально-изотропными. Ниже приведены упругие постоянные некоторых горных пород, заимствованные из разных литературных источников: Е, Е’ – модули Юнга по направлениям, параллельным напластованию и перпендикулярным к ним; v, v’ – коэффициенты Пуассона, характеризующие поперечное сжатие в плоскости напластования при сжатии в той же плоскости и в направлении, перпендикулярном к ней.
Если координатная плоскость выбрана параллельно плоскости напластования, а ось - перпендикулярно к ней, то обобщенный закон Гука записывается в виде:
(2.81)
где - модули сдвига в плоскости и в перпендикулярных к ней плоскостях.
Упругие постоянные горных пород | МПа | МПа | ||
Алевролит | 6,21 | 5,68 | 0,29 | 0,26 |
Глинистые сланцы | 3,16 | 1,54 | 0,22 | 0,22 |
Песчаник | 1,57 | 0,96 | 0,21 | 0,28 |
Песчанистый сланец | 1,07 | 0,52 | 0,41 | 0,20 |
Для большинства горных пород модули сдвига рекомендуется вычислять по формулам
,
где - основной параметр анизотропии.
Упругие постоянные анизотропных тел не инварианты относительно поворота системы координат, т.е. при изменении направления осей координат закон Гука видоизменяется.
Уравнения (2.81) не изменятся только при повороте координатной плоскости вокруг оси . В остальных случаях они видоизменяются.
Известно, что прочность горных пород на сжатие существенно отличается от прочности на растяжение или сдвиг. Кроме того, прочность может зависеть от направления сжатия, растяжения и сдвига относительно плоскостей напластования. Поэтому, используя результаты нескольких простых опытов, отличающихся видом напряженного состояния и направлением нагружения относительно плоскостей напластования, необходимо определить уравнение предельной поверхности данной горной породы. Для этой цели можно воспользоваться каким-либо обобщенным критерием для анизотропных тел.
Сравнительно простым критерием прочности может служить:
, (2.82)
который представляет собой обобщение критерия Мора (2.71) относительно главных направлений.
Для хрупкого тела, подчиняющегося этому условию, должно выполняться следующее соотношение между пределами прочности на растяжение и сжатие в плоскости напластования и направлении , перпендикулярном к ней:
.
Постоянные А, В и С связаны с пределами прочности формулами вида
Предложены и более сложные критерии разрушения анизотропных тел, содержащие большое число констант, подлежащих определению на основании опытных данных. Однако использование их вряд ли возможно из-за больших трудностей в проведении опытов.
Из (2.82) как частный случай следует критерий прочности для изотропных тел :
, (2.82’)??????????
где .
Этот критерий является одним из весьма полезных разновидностей общего критерия (2.80) для оценки прочности горных пород и цементного камня.
5. Трехосное компрессионное испытание горных пород.
Наиболее полное изучение механических свойств горных пород, учитывающее влияние порового (пластового) давления, осуществляется путем трехосного компрессионного испытания, принципиальная схема которого показана на рис. 15, а. Цилиндрический образец диаметром d = 10 – 30 мм и высотой l = 1 – 3 d упаковывают в непроницаемую оболочку и помещают в специальную толстостенную стальную камеру, где поддерживаются необходимое всестороннее давление и температура ºС. Поровое давление поднимается до желаемого значения волюмометром. Осевое дополнительное (дифференциальное) напряжение передается гидравлическим или винтовым прессом через поршень, который входит в верхнюю часть камеры. Изменение свободного объема порового пространства регулируется движением поршня в камере волюмометра, предназначенного для поддержания постоянного порового давления во время деформации образца.
Дата добавления: 2015-12-07; просмотров: 58 | Нарушение авторских прав