|
1) Для условия задачи поле корреляции выглядит след образом:
Между стоимостью техобслуживания (Y) и количеством копий (X) визуально определяется прямая линейная зависимость.
2) Определим параметры уравнения парной линейной регрессии.
X | Y | x | y | x2 | y2 | xy | y^ | |
12,00 | 1,40 | -3,00 | -0,70 | 9,00 | 0,49 | 2,10 | 2,99 | |
14,50 | 2,30 | -0,50 | 0,20 | 0,25 | 0,04 | -0,10 | 3,32 | |
16,80 | 2,50 | 1,80 | 0,40 | 3,24 | 0,16 | 0,72 | 3,62 | |
10,10 | 1,50 | -4,90 | -0,60 | 24,01 | 0,36 | 2,94 | 2,74 | |
18,40 | 2,80 | 3,40 | 0,70 | 11,56 | 0,49 | 2,38 | 3,83 | |
17,30 | 2,05 | 2,30 | -0,05 | 5,29 | 0,00 | -0,12 | 3,68 | |
20,10 | 2,70 | 5,10 | 0,60 | 26,01 | 0,36 | 3,06 | 4,05 | |
16,30 | 2,10 | 1,30 | 0,00 | 1,69 | 0,00 | 0,00 | 3,55 | |
11,60 | 1,70 | -3,40 | -0,40 | 11,56 | 0,16 | 1,36 | 2,94 | |
12,90 | 1,95 | -2,10 | -0,15 | 4,41 | 0,02 | 0,32 | 3,11 | |
итого | 150,00 | 21,00 | 0,00 | 0,00 | 97,02 | 2,09 | 12,66 | 33,84 |
среднее | 15,00 | 2,10 |
β^ | 0,130489 |
â | 1,426716 |
Интерпретация коэффициента регрессии. С увеличением количества копий на 1 тыс. шт., стоимость техобслуживания увеличится на 0,13 тыс. у.е.
3) Расчет линейного коэффициента корреляции.
r=12,66/97,2*2,09=0,8901
т.е. связь между изучаемыми переменными прямая (коэффициента корреляции положителен) линейная.
Определим коэффициент детерминации R2=0,89012=0,7923. Т.е. 79,2% вариации стоимости техобслуживания объясняется вариацией количества копий.
4) Оценим статистическую зависимость коэффициента регрессии β.
e | e^2 |
-1,59 | 2,54 |
-1,02 | 1,04 |
-1,12 | 1,25 |
-1,24 | 1,55 |
-1,03 | 1,06 |
-1,63 | 2,67 |
-1,35 | 1,82 |
-1,45 | 2,11 |
-1,24 | 1,54 |
-1,16 | 1,35 |
-12,84 | 16,92 |
σ2u=16,92/(10-2)=2,12
µβ=√2,12/97,02=14,77
F=8*0,792*(1-0,792)=30,52
5) Рассчитаем прогнозное значение Ŷ* для заданного X*
Ŷ*=0,14+0,13*13,2=1,87
h*= 1/10+(13,2-15,0)^2/97,02=0,13
Дата добавления: 2015-11-04; просмотров: 16 | Нарушение авторских прав
<== предыдущая лекция | | | следующая лекция ==> |
Документ предоставлен КонсультантПлюс | | | А тепер куди? – одіссея сучасних літературних теорій |