Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Понятия, ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации. 2 страница



Гетерохроматин (от гетеро… и греч. chroma — цвет), участки хромосом, остающиеся в промежутке между делениями клетки, т. е. в интерфазе, уплотненными (в отличие от др. участков — эухроматина). Гетерохроматин иногда тесно связан с ядрышком, образуя вокруг него подобие кольца или оболочки. Во время митоза Гетерохроматин окрашивается сильнее или слабее, чем эухроматин (явление положительного или отрицательного гетеропикноза). Гетерохроматин особенно характерен для половых хромосом многих видов животных. Гетеропикнотические участки удаётся получить в эксперименте, например при действии низкой температуры. Полагают, что Гетерохроматин не содержит генов, контролирующих развитие организма.

 

11.Изменения в организации морфологии хромосом в ходе митоза и мейоза. Репликация

хромосом. Политения. Онтогенетическая изменчивость хромосом.

Х. в период митоза и мейоза. При переходе клетки к делению синтез ДНК и РНК в Х. прекращается, Х. приобретают всё более плотную упаковку (например, в одной Х. человека цепочка ДНК длиной 160 мм укладывается в объёме всего 0,5´10 мкм), ядерная мембрана разрушается и Х. выстраиваются на экваторе клетки. В этот период они наиболее доступны для наблюдения и изучения их морфологии. Основная структурная единица метафазных Х., так же как и интерфазных, — нить ДНП диаметром 100—200, уложенная в плотную спираль. Некоторые авторы обнаруживают, что нити диаметром 100—200 образуют структуры второго уровня укладки — нити диаметром около 2000, которые и формируют тело метафазной Х. Каждая метафазная Х. состоит из хроматид (рис. 3, 1), образовавшихся в результате репликации исходной интерфазной Х. Использование меченых и модифицированных предшественников ДНК позволило четко различать в Х., находящейся в метафазе митоза, дифференциально окрашенные хроматиды, благодаря чему было установлено, что при репликации Х. нередко происходит обмен участками между сестринскими хроматидами (кроссинговер). В классической цитологии придавалось большое значение матриксу метафазной Х., его считали обязательным компонентом, в который погружены спирализованные хромонемы. Современные цитологи рассматривают матрикс метафазных Х. как остаточный материал разрушающегося ядрышка; часто он вовсе не обнаруживается.

 

Политения — редупликация хромонем в хромосомах, приводящая к увеличению числа хромонем без увеличения числа хромосом и без реорганизации ядра. Этот процесс, протекающий внутри хромосом, приводит к полиплоидизации количества



 

12.Молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина:

ДНК, РНК, гистоны, другие белки. Уровни упаковки хроматина, нуклеосомы.

В настоящее время наиболее известны три типа хромосом:

- у прокариот в нуклеоиде и в клеточных органеллах эукариот

- хромосомы из делящихся клеток эукариот

- интерфазные хромосомы эукариот

Основная особенность строения - отсутствие ядра, ограниченного оболочкой. Наследственная информация заключена в одной бактериальной кольцевидной хромосоме, состоящей из одной молекулы ДНК и погруженной в цитоплазму. ДНК не образует комплекса с белками > гены, входящие в состав хромосом, "работают", т.е. с них непрерывно считывается информация. ДНК закреплена на мембране с помощью специальных белковых нитей. Содержание ДНК намного меньше, чем в эукариотической клетке. Большинство генов уникальны, повторяются обычно только гены, кодирующие тРНК и рРНК. Ядро - важнейшая составная часть клетки. Клеточное ядро содержит ДНК, т.е. гены, и благодаря этому выполняет две главные функции: 1) хранения и воспроизведения генетической информации и 2) регуляции процессов обмена веществ, протекающих в клетке. Ядро окружено оболочкой, которая состоит из двух мембран, имеющих типичное строение. Наружная ядерная мембрана с поверхности, обращенной в цитоплазму, покрыта рибосомами, внутренняя мембрана гладкая. Хроматин содержит ДНК и белки и представляет собой спирализованные и уплотненные участки хромосом.

ХРОМАТИН, нуклеопротеид клеточного ядра, составляющий основу хромосом. В состав X. входят: ДНК (30-40% по массе), гистоны (30-50%), негистоновые белки (4-33%) и РНК. Кол-во негистоновых белков, РНК, а также размеры молекул ДНК колеблются в широких пределах в зависимости от метода выделения X. и природы объекта. Взаимод. между гистонами и ДНК гл. обр. ионное.

Структуру X. формирует элементарная фибрилла диаметром 10 нм. Для нее известны 4 уровня укладки в более сложные структуры. Важнейший этап в структурных исследованиях X.- открытие в 1973 осн. структурной единицы X.-нуклеосомы. Она состоит из универсальной "кор"-частицы, образованной ДНК (146 нуклеотидных пар), октамером из 4 гистонов (Н2А, Н2В, НЗ и Н4 - по две молекулы каждого) и линкерной ДНК переменной длины (0-80 нуклеотидных пар), связанной с гистоном H1. Последовательность расположения гистонов вдоль молекулы ДНК имеет вид -Н3 — Н2А — Н2В — (Н4, Н3)2 — Н2В — Н2А — Н3. Согласно пространств. модели А. Клуга "кор"-частица выглядит как плоский диск диаметром 11 нм, толщиной 5,7 нм, с осью симметрии 2-го порядка, на внеш. пов-сть к-рого навита двойная спираль ДНК в В-форме, образующая 1,75 витка левой суперспирали.

Для фибриллы диаметром 10 нм предложена модель "бусы на нитке" со специфич. по отношению к нуклеотидной последовательности ДНК расположением нуклеосом (т. наз. фазированием). Следующий уровень организации представлен толстой фибриллой диаметром 30 нм. Ее описывают две альтернативные модели: регулярная спираль - соленоид, на один виток к-рой приходится от 3 до 7-8 нуклеосом и менее признанная глобулярная, где каждые 6-12 нуклеосом образуют глобулу. Важную роль в наднуклеосомной организации X. играет гистон H1. Детали устройства т. наз. петельной или доменной структуры X. и собственно хромосомы в метафазе (одна из стадий деления клетки) неизвестны. Интересна гипотеза о соответствии одного домена одному или, в крайнем случае, неск. генам.

О значении РНК в составе хроматина еще нет достаточно однозначных данных. Возможно, что эта РНК представляет собой сопутствующую препарату функцию синтезирующейся

РНК и поэтому частично связанной с ДНК или это особый вид РНК, характерный для структуры хроматина.

Гистоны составляют большинство основных белков хроматина и находятся примерно в том же количестве, что и ДНК.

Гистоны четырех классов прямо взаимодействуют с ДНК и образуют в хроматине серию частиц первого уровня организации. Консервативность типов гистонов на протяжении эволюции можно объяснить необходимостью сохранения этой важнейшей реакции. Пятый класс гистонов принимает участие во взаимодействиях между частицами. Постоянство классов гистонов позволяет предполагать, что взаимодействия типа ДНК—гистоны, гистон—гистоны и гистон—негистоновые белки могут быть в основном похожими у разных видов. Отсюда мы можем сделать заключение об общих механизмах образования как первичных частиц, так и последующих структур более сложного порядка, состоящих из серий частиц.

Гистоны первых четырех классов имеют значительное количество как кислых, так и основных аминокислот. Поэтому эти белки несут высокий заряд. Отношение основных аминокислот к кислым находится в диапазоне 1,4-2,5. Эти гистоны подразделяются на две группы.

К аргинин-богатым относятся два вида гистонов: Н3 и Н4. Они принадлежат к наиболее консервативным из всех известных белков.

К гистонам, умеренно обогащенным лизином, относятся два белка. Их называют Н2А и Н2В (в противоположность их номенклатурному обозначению это не родственные, а независимые белки). У различных эукариот находят те же самые два типа гистонов, но у них обнаружены заметные межвидовые вариации в аминокислотной последовательности.

Пятый класс представлен гистонами, очень богатыми лизином; он состоит из нескольких достаточно близкородственных белков с перекрывающимися последовательностями аминокислот. Это гистоны H1 (в эритроцитах птиц существует вариант, названный Н5). У этих гистонов обнаружены значительные межвидовые и межтканевые вариации (у дрожжей, по-видимому, гистонов данного класса нет). Хотя эти гистоны являются самыми основными гистонами, их легко можно выделить из хроматина, полностью растворив в солевом растворе (0,5М).

 

Как и следует из названия, негистоны - это все другие белки хроматина. Предполагается поэтому, что они обладают большими видовыми и тканевыми различиями, хотя строгих данных о степени их разнообразия пока нет. Эти белки составляют меньшую долю от всей массы белков хроматина, чем гистоны. Кроме того, сюда относится намного большее число белков, так что любой индивидуальный белок присутствует в значительно меньшем количестве, чем любой гистон.

В класс негистоновых белков могут попасть белки, связанные с экспрессией генов, и белки, участвующие в организации структур высшего порядка. Так, в числе наиболее выдающихся негистонов можно назвать РНК-полимеразу. HMG-белки (высокомобильная группа) составляют отдельный, хорошо различимый подкласс негистонов. Основная проблема, возникающая при работе с другими негистоновыми белками - их загрязнение другими ядерными белками.

Упаковка генетического материала достигается путем спирализации (конденсации). 3.1. Первый уровень упаковки ДНК — нуклеосомный.

Нуклеосома представляет собой глобулу (октамер), содержащую по две молекулы каждого из четырех гистонов — (вокруг которой двойная спираль ДНК образует около двух витков и переходит на следующую глобулу.. Длина молекулы ДНК уменьшается в 5-7 раз.. Второй уровень упаковки — соленоидный (супернуклеосомный). Нуклеосомная нить конденсируется, ее нуклеосомы «сшиваются» гистоном Н1 и образуется спираль диаметром около 25 нм. Один виток спирали содержит 6-10 нуклеосом. Этим достигается укорочение нити еще в 6 раз.. Третий уровень упаковки — хроматидный (петлевой). Супернуклеосомная нить спирализуется с образованием петель и изгибов. Она составляет основу хроматиды и обеспечивает хроматидный уровень упаковки. Четвертый уровень упаковки — уровень метафазной хромосомы, Хроматиды в метафазе способны спирализоваться с образованием эухроматиновых (слабо спирализованных) и гетерохроматиновых (сильно спирализованных) участков; происходит укорочение в 20 раз.. Общий итог конденсации — укорочение нити ДНП в 10000 раз.

 

13.Цели и принципы генетического анализа. Методы: гибридологический, мутационный,

цитогенетический, генеалогический, популяционный, близнецовый, биохимический.

Система опытов с целью разложения признаков организма на отдельные элементы и изучение соответствующих им генов носит название «генетический анализ». Основной принцип генетического анализа - принцип анализа единичных признаков, согласно которому на первом этапе рассматриваются поколения по каждому признаку отдельно, независимо от других признаков. Задачи генетического анализа: установление гена; изучение его свойств путем изучения его действия на признаки в различных комбинациях с другими генами; установление сцепления гена с другими генами, ранее установленными; определение расположения гена среди других, сцепленных с ним. Объект генетического анализа – физиология гена: структура, воспроизведение, механизм действия и изменчивость.

Гибрид.метод – это анализ хар-ра наследования признаков с помощью системы скрещивания, суть к-ых состоит в получ-й гибридов и анализе их потомков в ряду поколении. Эта схема гибрид.анализа вкл-т: подбор материала для получения гибридов, скрещиваний между собой и анализа след.поколении.

Гибрид. метод Г. Менделя имеет след-ие особенности:

1) анализ нач-ся со скрещивания гомозиготных особей («чистые линии»);

2) анализ-ются отдельные альтернативные (взаимоисключающие) признаки;

3) проводится точный количественный учет потомков с различной комбинацией признаков (исп-ся математические методы);

4) наследование анализируемых признаков прослеживается в ряду поколений.

Мендель также предложил систему записей скрещивания. В наст.время гибрид.анализ яв-ся частью ген.анализа, позволяющего опр-ть хар-р наследования изучаемого признака, выяс-ть локализацию генов.

Генеалогический метод - относящийся к числу основных в генетике человека, этот метод опирается на генеалогию — учение о родословных. Его сутью является составление родословной и последующий ее анализ. Впервые такой подход был предложен английским ученым Ф. Гальтоном в 1865 г.

Близнецовый метод - это метод изучения генетических закономерностей на близнецах. Впервые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает возможность определить вклад генетических (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкрет ных признаков или заболеваний у человека.

Популяционно-статистический метод - одним из важных направлений в современной генетике является популяционная генетика. Она изучает генетическую структуру популяций, их генофонд, взаимодействие факторов, обусловливающих постоянство и изменение генетической структуры популяций.

Цитогенетический метод - основа метода — микроскопическое изучение хромосом человека. Цитогенетические исследования стали широко использоваться с начала 20-х гг. ХХ в. для изучения морфологии хромосом человека, подсчета хромосом, культивирования лейкоцитов для получения метафазных пластинок.

Биохимический метод - причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций. Использование современных биохимических методов (электрофореза, хроматографии, спектроскопии и др.) позволяют определять любые метаболиты, специфические для конкретной наследственной болезни.

Мутационный метод - выявление эффекта мутации, оценка мутагенной опасности отдельных факторов и окружающей среды. Поиск неизвестных мутаций и выявление известных мутаций - это разные диагностические задачи. Крупные мутации легче обнаружить. Блоттинг по Саузерну и полимеразная цепная реакция позволяют выявить увеличение числа тринуклеотидных повторов, делеции, вставки и другие перестройки ДНК. Также мутационный метод позволяет выявить любую мутацию, существенно снижающую уровень мРНК.

 

14.Закономерности наследования при моногибридпом скрещивании, открытые Г.

Менделем. Представление Г. Менделя о дискретной наследственности (факториальная

гипотеза). Закон "чистоты гамет".

Мендель открыл закон-сти наслед-ния, проводя гибрид-цию различных сортов гороха. Гибридизация - это скрещивание особей с различными генотипами. Скрещивание, при котором у родительских особей учитывается одна пара альтернативных признаков, называется моногибридным.

Первый закон Менделя: при скрещивании гомозиготных особей анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения, как по фенотипу, так и по генотипу. Для проявления законов Менделя необходимо соблюдать ряд условий:

1) гены разных аллельных пар должны нах-ся в разных хромосомах;

2) между генами не должно быть сцепления и взаимод-вия (кроме полного домин-ния);

3) должна быть равная вероятность обр-ния гамет и зигот разного типа и равная вероятность выживания орг-змов с разными генотипами (не должно быть летальных генов);

4) должна быть 100% пенетрантность гена, отсутствовать плейотропное действие и мутации гена.

Изучая моногиб-ое скрещ-ие, Мендель разработал разные типы скрещ-ия:

1.возвратное-скрещ-е гибрида с родит. Особью.

2.прямое и обратное-хар-ся взаимопротив-м сочетанием анализ-го признака и пола.

3.анализирующее-скрещивание гибрида с рецес-ой гомозиготой Аа*аа, при этом гомозиготную рец-ую особь наз-ся анализатором, т.к. она не будет влиять на на фенотипическое прояв-ие задатков, получаемых от гибрида.

Правило чистоты гамет:нах-еся в каждом орг-зме пары альтерн-ых признаков не смешив-ся, каждая гамета несет только по одному задатку каждого признака и свободна от других задатков этого признака.

Цитологическое обоснование этого правила появл-ся позже: Во время мейоза у гибрида F1(Аа) разн.пары хромосом расх-ся в дочерн.клетки независимо =>при случ.оплодотворении – 3 типа зигот (АА, Аа и аа). Др.док-во – тетрадный анализ (у мхов гетерозиг. Аа клетка дает тетраду гаплоидных спор. У половины развившихся из спор организмов генотип – А, у половины – а).

 

15.Представление об аллелях и их взаимодействиях: полное и неполное доминирование,

кодоминирование. Гомозиготность и гетерозиготность. Относительный характер

доминирования. Возможные биохимические механизмы доминирования.

Аллель - одно из возможных состояний гена, каждое из к-ых хар-ся уникальной последов-ью нуклеотидов.

Своеобразные внутриаллельные взаимод-ия набл-тся в случаях множественных аллелей. Множ-ыми наз-ся аллели, которые представлены в популяции более чем двумя аллельными состояниями. Они возникают в рез-те многократного мутирования одного и того же локуса хромосомы. По мимо доминантного и рецессивного генов появляются и промежуточные аллели, которые по отношению к доминантному ведут себя как рецессивные, а по отношению к рецессивному, как доминантные.

При полном дом-нии один ген полностью подавляет проявление другого гена (выпол-ся законы Менделя), при этом гомозиготы по домин-му признаку и гетерозиготы фенотипически неотличимы.

При неполном доминировании (промеж-ом наследовании) доминантный ген не полностью подавляет проявление действия рецес-ого гена. У гибридов первого поколения наблюд-ся промежуточное наследование, а во втором поколении - расщепление по фенотипу и генотипу одинаково 1:2:1 (прояв-ся доза действия генов). Напр., если скрестить растения душистого горошка с красными и белыми цветами первое поколение будет иметь розовые цветки.

При кодоминировании гены одной аллельной пары равнозначны, ни один из них не подавляет действия другого; если они оба находятся в генотипе, оба проявляют свое действие. Одновр-ое присутствие в генотипе генов JА и JВ обусловливает наличие в эритроцитах антигенов А и В (IV группа крови). Гены JА и JВ не подавляют друг друга - они яв-ся равноценными, кодоминантными.

Гомозиготность, состояние следственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена (см. Аллели). Переход гена в гомозиготное состояние приводит к проявлению в структуре и функции организма (фенотипе) рецессивных аллелей, эффект которых при гетерозиготности подавляется доминантными аллелями. Тестом на Гомозиготность служит отсутствие расщепления при определённых видах скрещивания. Гомозиготный организм образует по данному гену только один вид гамет.

Гетерозиготность, присущее всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена или различаются по взаиморасположению генов («структурная Гетерозиготность»). Термин «Гетерозиготность» впервые введён английским генетиком У. Бэтсоном в 1902. Гетерозиготность возникает при слиянии разнокачественных по генному или структурному составу гамет в гетерозиготу. Структурная Гетерозиготность возникает при хромосомной перестройке одной из гомологичных хромосом, её можно обнаружить в мейозе или митозе. Выявляется Гетерозиготность при помощи анализирующего скрещивания. Гетерозиготность, как правило, — следствие полового процесса, но может возникнуть в результате мутации (например, у гомозиготы АА один из аллелей мутировал: А®А'). При Гетерозиготность эффект вредных и летальных рецессивных аллелей подавляется присутствием соответствующего доминантного аллеля и проявляется только при переходе этого гена в гомозиготное состояние. Поэтому Гетерозиготность широко распространена в природных популяциях и является, по-видимому, одной из причин гетерозиса. Маскирующее действие доминантных аллелей при Гетерозиготность — причина сохранения и распространения в популяции вредных рецессивных аллелей (т. н. гетерозиготное носительство). Их выявление (например, путём испытания производителей по потомству) осуществляется при любой племенной и селекционной работе, а также при составлении медико-генетических прогнозов.

Существование множественных аллелей само по себе указывает на относительный характер доминирования, на то, что оно проявляется только в конкретных условиях генотипической среды.

На биохимическом уровне часто наблюдается совместное доминирование аллелей одного гена: каждый из них дает свой вариант генопродукта – белка или другого вещества (при этом нуль–аллели дают отсутствие генопродукта).

 

16. Анализирующее скрещивание, анализ типов и соотношения гамет у гибридов.

Расщепление по фенотипу и генотипу во втором поколении и анализирующем

скрещивании при моногенном контроле признака и разных типах аллельных

взаимодействий.

Анализирующее-скрещивание гибрида с рецес-ой гомозиготой Аа*аа, при этом гомозиготную рецессивную особь наз-ся анализатором, т.к. она не будет влиять на на фенотипическое прояв-ие задатков, получаемых от гибрида. Гаметы гомозиготного рец-го орг-зма выяв-ют стр-ру генотипа, к-ый м.б. представлен 2 вариантами-АА и Аа. При скрещивание с доминантой гомозиготной формой все потомство будет единообразно, а при скрещ-ии с гетерозиготой будет набл-ся расщепл-ие по генотипу 1:1. (Р Аа*аа, Г А,а; а, F 1Аа:1аа). На оснговании этих рез-в мендель пришел к выводу, что рецессивные задатки не исчез-т в гетерозиготном орг-зме, а отс-ся в неизм-ми и прояв-ся при встрече с такими же рец-ми задатками.

Правило чистоты гамет:нах-еся в каждом орг-зме пары альтерн-ых признаков не смешив-ся, каждая гамета несет только по одному задатку каждого признака и свободна от других задатков этого признака.

Закономерности наследования при моногибридном скрещивании, открытые Г. Менделем: единообразие гибридов первого поколения, расщепление во втором поколении.

Второй закон Менделя — закон расщепления. При скрещивании гибридов первого поколения между собой (т.е. гетерозиготных особей) получается след-щий результат: Особи, содержащие доминантный ген А, имеют желтую окраску семян, а содержащие оба рецессивных - зеленую. След-но, отношение особей по фенотипу (окраске семян) - 3:1 (3 части с доминантным признаком и 1 часть - с рецессивным). По генотипу: 1 часть особей - желтые гомозиготы (АА), 2 части - желтые гетерозиготы (Аа) и 1 часть - зеленые гомозиготы (аа). Второй закон Менделя: при скрещивании гибридов первого поколения (гетерозиготных организмов), анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

 

17.Закономерности наследования в ди- и полигибридных скрещиваниях, при моногенном

контроле каждого признака. Общая формула расщеплений при независимом

наследовании.

Мендель открыл закон-сти наследования, проводя гибридизацию различных сортов гороха. Гибридизация - это скрещивание особей с различными генотипами. Скрещивание, при к-ом у родительских особей учитывается одна пара альтернативн. признаков, называется моногибридным, две пары признаков — дигибридным, более двух пар — полигибридным.

При изучении дигиб-го и полигиб-го скрещ-ия Мендель сфор-л закон независимого наслед-ия признаков: при ди- и полигиб-х скрещиваниях каждая пара признаков наследуется независимо от других, расщепляясь 3:1 и может независимо комбинироваться с другими признаками. При анал-щем скрещивании расщепление по фенотипу и по генотипу совпадает 1:1:1:1.

Основываясь на независимости наслед-ия признаков, локализованных в разных парах гомолог.хр-м, Мендель вывел цифровые законом-сти для любого полигиб-го скрещивания, где каждый признак ведет себя как при моногибр-м скрещивании.

Основываясь на независимости наслед-ия признаков, локализованных в разных парах гомолог.хр-м, Мендель вывел цифровые законом-сти для любого полигиб-го скрещивания, где каждый признак ведет себя как при моногибр-м скрещивании:

2n-число сортов гамет, обр-ых гибридом

2n-число фенотип-х классов, образуемых при скрещ-ии гибридов.

3n-число генотип-х классов.

4n-число возм-х перекомб-ции гамет

(3:1)n-формула расщеп-ии по фенотипу.

(1:2:1)n-формула расщеплении по генотипу.

 

18.Неаллельные взаимодействия. Биохимические основы неаллельных взаимодействий.

Плейотропное действие генов. Пенентрантность и экспрессивность.

Гены, расположенные в разных локусах, как на одной, так и разных хромосомах, называются неаллельными, их взаимодействие называется межаллельным. Различают следующие его виды: комплиментарность, эпистаз и полимерию. При комплиментарности присутствие в одном генотипе двух доминантных (рецессивных) генов из разных аллельных пар приводит к появлению нового варианта признака. Типичный пример - развитие слуха у человека. Для нормального слуха в генотипе человека должны присутствовать доминантные гены из разных аллельных пар D и Е. Ген D отвечает за нормальное развитие улитки; а ген Е — за развитие слухового нерва. У рецессивных гомозигот (dd) будет недоразвита улитка, а при генотипе ее — недоразвит слуховой нерв. Люди с генотипами D-ее, ddE- и ddee будут глухими.

При эпистазе доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары. Это явление противоположно комплементарности. а) гены, оказывающие доминантный эффект, называются эпистатическими генами или генами-супрессорами. По отношению к ним — это доминантный эпистаз.

У кур доминантный ген С детерминирует синтез пигмента, а доминантный аллель другого гена I является его супрессором, и куры с генотипом С-I- имеют белое оперение.

У человека описан «бомбейский феномен» в наследовании групп крови по АВО системе. У женщины, получившей от матери аллель JВ, фенотипически определялась I(0) группа крови. При детальном исследовании было установлено, что действие гена JВ (синтез в эритроцитах антигена В) было подавлено редким рецессивным геном, который в гомозиготном состоянии оказал эпистатическое действие.

в) гены, усиливающие доминантное действие, называются генами - интенсификаторами. Подавляемые гены называются гипостатическими генами. По отношению к ним — это рецессивный эпистаз. Эпистаз широко распространен в природе, однако его биохимические механизмы изучены мало.

В случае, когда взаимодействуют гены из разных аллельных пар, но с одинаковым дополняющим друг друга влиянием на признак, их называют полигенами или полимерными генами. Само явление такого взаимодействия получило название полимерии. При этом степень проявления признака зависит от числа доминантных аллелей полигенов. Такие признаки называются количественными. Полимерные гены принято обозначать одной буквой латинского алфавита с цифровыми индексами, например, А1А1А2А2а3а3 и т.д. Признаки, детерминируемые полимерными генами, называются полигенными. Таким образом, наследуются многие количественные и некоторые качественные признаки у животных и человека: рост, масса тела, величина артериального давления, цвет кожи и др. Степень проявления этих признаков зависит от количества доминантных генов в генотипе (чем их больше, тем сильнее выражен признак) и в значительной мере от влияния условий среды. У человека может наблюдаться предрасположенность к различным заболеваниям: гипертонической болезни, ожирению, сахарному диабету, шизофрении и др. Данные признаки при благоприятных условиях среды могут и не проявиться или быть слабо выраженными. Это отличает полигенно наследуемые признаки от моногенных. Изменяя условия среды и проводя профилактические мероприятия можно значительно снизить частоту и степень выраженности некоторых мультифакториальных заболеваний. Суммирование «доз» полимерных генов (аддитивное действие) и влияние среды обеспечивает существование непрерывных рядов количественных изменений. Минимальное количество полимерных генов, при котором проявляется признак, называется пороговым эффектом.

Обнаружено много примеров комплементарного и эпистатического действия генов у микроорганизмов, растений, животных и человека. В основе взаимодействия неаллельных генов лежит биохимическое отношение между белками-ферментами, которые кодируются комплементарными или эпистатическими генами.

Зависимость нескольких признаков от одного гена носит название плейотропии. Обнаружено, что у овса окраска чешуи и длина ости семян определяются одним геном. У человека аномалия, известная под названием "паучьи пальцы", обусловлена геном, с которым связаны также нарушения в строении.

С другой стороны, один и тот же признак может определяться разными генами — это явление генокопии.

Наконец, выделяют также явление фенокопии, когда признак обусловлен не действием гена, а влиянием фактора внешней среды. Классический пример — функция зрения. Эта функция определяется группой генов, продукты действия которых, взаимодействуют друг с другом сложным образом в течение всей жизни индивида и обеспечивают развитие и поддержание функций глаз и мозга. В случае нарушения целостности этой системы под действием генетических и/или средовых причин может развиться слепота.

Показателями зависимости функционирования гена от генотипа служат экспрессивность и пенетрантность.

Экспрессивность — это степень выраженности одного и того же варьирующего признака у разных лиц, имеющих ген, контролирующий этот признак. Отмечается низкая или высокая экспрессивность.

Пенетрантность — это вероятность проявления признака у разных лиц, имеющих ген, контролирующий этот признак. Пенетрантность измеряется в долях лиц (процентах), имеющих данный признак, по отношению к общему числу лиц, являющихся носителями


Дата добавления: 2015-11-04; просмотров: 53 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.023 сек.)







<== предыдущая лекция | следующая лекция ==>