Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Пусть некоторый эксперимент, или, согласно терминологии, ис­пользуемой в теории вероятностей, испытание, может быть, по крайней мере теоретически, проведено в одних и тех же условиях неограниченное 1 страница



1. Случайные события

Пусть некоторый эксперимент, или, согласно терминологии, ис­пользуемой в теории вероятностей, испытание, может быть, по крайней мере теоретически, проведено в одних и тех же условиях неограниченное количество раз. Результатом каждого испытания является тот или иной его исход, называемый событием. Иными словами, случайное событие - это такое событие, которое в результате испытания может произойти, а может и не произойти. Случайные события принято обозначать большими буквами латинского алфавита.

Определение. Случайные события А1, А2,..., Ап называются несовместными, если осуществление любого из них в результате испытания исключает осуществление при этом других перечис­ленных событий.

Определение. Случайные события А1, А2,..., Ап называются совместными, если осуществление любого из них в результате испытания не исключает осуществления при этом других из пе­речисленных событий.

Классическое определение вероятности случайного события

Под вероятностью случайного события в математике понимают меру возможности осуществления данного события в конкретных условиях эксперимента (испытания).

Определение. Вероятностью Р(А) случайного события А назы­вается отношение количества т элементарных событий, благо­приятствующих событию А, к общему количеству элементарных событий п: Р(А)=m/n

Поскольку в общем случае 0≤т≤п, то из этого определения, называемого классическим определением вероятности случайно­го события, следует, что вероятность произвольного случайного события принадлежит отрезку [0,1], т.е. 0 Р(A) 1

Статистическая вероятность события.
допустим что имеется возможность неограниченного повторения испытание, в кадом из которых отмечается событие А. при достаточно большом числе n испытаний наше событие А произошло m раз. Отношение P(A)=m/n это отношение называется относительноц частотой события А. частоту события называют статистической вероятностью.

2. Теоремы сложения и умножения вероятностей случайных событий

Если случайные события А и В являются несовместными собы­тиями с известными вероятностями, то справедлива следующая теорема, называемая теоремой сложения.

Теорема 8.1. Вероятность наступления случайного события А или несовместного с ним события В равна сумме вероят­ностей этих событий:

Р(А или В) = Р(А) + Р(В)

Определение. Случайное событие Л, состоящее в том, что случайное событие А не произошло, называется событием, про­тивоположным событию А.



Для противоположных событий справедлива следующая тео­рема.

Теорема 8.2. Сумма вероятностей наступления случайного события А и противоположного ему события А равна единице: P(A)+P(Ā)=1
условная вероятность.

Определение. Случайные события А и В называются незави­симыми, если вероятность осуществления каждого из них не зависит от того, осуществилось ли при этом другое событие.

Теорема 8.3. Вероятность наступления двух независимых случайных событий А и В равна произведению вероятностей этих событий: Р(А и В) = P(A)*P(B)

Определение. Случайное событие В называется зависимым от случайного события А, если вероятность осуществления события В зависит от того, произошло ли событие А.

Определение. Вероятность осуществления случайного события В, вычисленная при условии наступления события А, называется условной вероятностью события В и обозначается Р(В/А).

Теорема 8.4. Вероятность наступления случайного события А и зависящего от него события В равна произведению вероят­ности события А на условную вероятность события В: Р(А и В) = Р(А) * Р(В/А)
3.Случайные величины

Определение. Числовая функция X значения которой отнесены к каждому из событий А принадлежит гамма называется случайной величиной. X=X(A)

Понятие дискретных и непрерывных случайных величин

Определение. Случайная величина называется дискретной, если совокупность всех ее возможных значений представляет собой конечное или бесконечное, но обязательно счетное множество значений, т. е. такое множество, все элементы которого могут быть (по крайней мере теоретически) пронумерованы и выписаны в соответствующей последовательности.

Основные числовые характеристики дискретной случайной величины

Определение. Математическим ожиданием М(Х) (часто ис­пользуется также обозначение «ц») дискретной случайной ве­личины X называется сумма произведений каждого из всех ее возможных значений на соответствующие вероятности: М(Х)= μ= ∑xipi= x1p1+x2p2+…xnpn

где индекс г принимает значения 1, 2, 3,..., п.

Основной смысл математического ожидания дискретной слу­чайной величины состоит в том, что оно представляет собой среднее значение данной

Определение. Дисперсией D(Х) (часто используется также обо­значение «σ2») дискретной случайной величины называется ма­тематическое ожидание квадрата отклонения этой величины от ее математического ожидания:

D(Х) = σ 2 =М((Х- μ )2).

Следует, однако, отметить, что на практике дисперсию часто удобнее вычислять по формуле D(Х) = σ 2 =М( X2)-μ 2

Определение. Средним квадратическим отклонением диск­ретной случайной величины называется квадратный корень из ее дисперсии: σ(X)= √D(X)

 

4. Основные числовые характеристики непрерывной случайной величины

Под основными числовыми характеристиками непрерывной слу­чайной величины понимают, как и в случае дискретной случай­ной величины, математическое ожидание, дисперсию и среднее квадратическое отклонение. Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежит всей оси Ox называют несобственный интеграл. M(X)= μ= ∫x f(x)dx
дисперсией непрерывной случайной величины возмодные значения которой принадлежит всей оси Ox называют несобственный интеграл. D(X)= σ 2 =∫(x- μ)2 f(x)dx

Среднее квадратическое отклонение, как и для дискретной случайной величины, определяется формулой:

σ= √D(X)

5.
Дискретной случайной величиной (ДСВ) называют такую величину, множество значений которой либо конечное, либо бесконечное, но счетное.

Непрерывной случайной величиной (НСВ) называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Множество возможных значений непрерывной случайной величины бесконечно и несчетно.
распределение Бернулли
представим, ято в отношении некотором случайном событии А производят n независимых испытаний, при условии что в каждом испытании p появление этого события постоянно. Будем учитывать только 2 исхода: появление события А либо противоположное ему событие А тоже имеющего постоянную вероятность q. Причем p+q=1
при этих условиях если событие А в n испытаниях появится m раз то события противоположные А (n-m) раз
P(m)=C*P(1-p) в степени n-m формула бернулли


6. Распределение Пуассона.
когда вероятность события очень мала и исчисляется сотыми и тысячными долями единицы, распределение частот таких редких событий в n независимых испытаниях становится крайне ассиметричным. Для такого рода распределения и служит формула пуассона. P(m)=a(в степени m)/m!*e(в степени -а)
а=n*p наивероятнейшая частота ожидаемого события. M частота ожидаемого события в n независимых испытаниях.
Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным. Дадим более точное определение

Дискретной случайной величиной (ДСВ) называют такую величину, множество значений которой либо конечное, либо бесконечное, но счетное.

Непрерывной случайной величиной (НСВ) называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Множество возможных значений непрерывной случайной величины бесконечно и несчетно.

7. Непрерывные и дискретные случайные величины. Плотность вероятности. Нормальный закон распределения. Математическое ожидание и дисперсия. Графическое представление. Примеры.

Дискретные случайные величины – величины, которые могут принимать счетное количество значений конечное или бесконечное.
пример: количество пассажиров в транспорте.

Непрерывные случайные величины- величины. Которые принимают бесконечное число возможных значений в конечном, или в бесконечном интервалах изменения
пример: время, масса, объем, температура тела.

Плотностью вероятности f(x) непрерывной случайной величины Х называется производная функции распределения F(X) этой величины: f(x)=F’(X)

Основные свойства плотности:
1). Плотность вероятности является неотрицательной функцией: f(x)>0
2) вероятность того, что в результате испытания непрерыв. Случ. Величина примет какое-либо значение из интервала(а,b), равна определенному интегралу(в пределах от а до b) от плотности вероятности этой случайной величины.

3).определенный интеграл в пределах от минус бесконечности до плюс бесконечности от плоности вероятности непрерывной случайной величины равен единице..

4)определенный интеграл в пределах от «–«бесконечности до х от плотности вероятности непрерывной случайной величины равен функции распределения этой величины.

Нормальное распределение, также называемое распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ ² — дисперсия.

Графики нормального распределения

Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных значений случайной величины на соответствующие им вероятности, т.е. *

Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания.

Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда

где символ M обозначает математическое ожидание.

8. Нормальное распределение, также называемое распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ ² — дисперсия.
Доверительный интервал — это

интервал, построенный с помощью

случайной выборки из распределения с

неизвестным параметром, такой, что он содержит данный параметр с заданной вероятностью
Интервал называется доверительным интервалом для параметра , а

вероятность - доверительной вероятностью

9. Генеральная совокупность – множество каких

-либо однородных элементов, которые

предстоит изучить статистическими методами; множество всех значений случайной величины.

Выборка – это некоторая часть элементов, выделяемая по определенному правилу из ген. совокупности.

Объём выборки – это число выделяемых элементов в генеральной совокупности. Минимальным, статистическим допустимым объёмом выборки, считается три элемента.

Выборка производится с целью описания генеральной совокупности. Если это описание является полным и корректным, то выборка является репрезентативной.

В ходе нескольких повторных измерений

физической величины получают набор результатов, являющийся выборкой объёма n:х1, х2,…..,хn, где

n-число повторных измерений. Как

дискретные, так и непрерывные, случайные

величины могут быть получены в результате

опыта – наблюдения – то есть в виде

вариационнго ряда: 4,67; 5,49; К выборочным характеристикам отнтсятся среднее значение (Хср), как оценка

математического ожидания, выборочное

среднеквадратическое отклонение (Sx),

как оценка генерального значения среднеквадратического отклонения (σ) выборочная дисперсия (Sx2)

N- число элементов выборки

10.Оценка параметров генеральной совокупности

Пусть выборка объема n представлена в виде вариационного ряда. Назовем выборочной

средней величину

Если значения признака, полученные из выборки не группировать и не представлять в виде вариационного ряда,

то для вычисления выборочной

средней нужно по льзоваться

формулой.

Естественно считать величину

выборочной оценкой параметра M x.

Выборочная оценка параметра,

представляющая собой число, называется

точечной оценкой.

Выборочную дисперсию можно считать

точечной оценкой дисперсии Dx

генеральной совокупности.

Выборочный коэффициент корреляции

рассчитывается по формуле


11.Графические характеристики случайных величин

Медиа́на возможное значение признака,

которое делит ранжированную совокупность

(вариационный ряд выборки) на две равные

части: 50 % «нижних» единиц ряда данных

будут иметь значение признака не больше,

чем медиана, а «верхние» 50 % —

значения признака не меньше, чем медиана.

Для наглядности строят различные графики

статистического распределения, в частности

, полигон и гистограмму.

Полигоном частот называют ломаную линию,

отрезки которой

Соединяют точки.
Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которой служат частичные интервалы длиною h, а высоты равны отношению . Модой случайной величины называется её наиболее вероятное значение. Термин «наиболее вероятное значение», строго говоря, применим только к прерывным величинам; для непрерывной величины модой является то значение, в котором плотность вероятности аксимальна. выборочной средней называется среднее арифметическое

выборки.


12. Измерения делятся на прямые и косвенные. Прямые измерения проводят с помощью приборов, которые измеряют саму исследуемую величину.

Косвенных измерений – измерения пересчетом других величин, значения которых получены в результате прямых измерений.

Случайные и систематические погрешности. Обработка результатов прямых измерений. Запись окончательного результата

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промах), возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Такие погрешности происходят, если, например, экспериментатор неправильно прочтет номер деления на шкале, если в электрической цепи произойдет замыкание и вследствие других подобных причин. Грубых погрешностей следует избегать. Если установлено, что они имеют место, соответствующие измерения нужно отбрасывать.

Не связанные с вышеупомянутыми погрешности эксперимента делятся на случайные и систематические. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а "пляшут" вокруг некоторого среднего. В подобных случаях мы имеем дело со случайными погрешностями.

1. Механическ.волны. Уравнение плоской волны. Параметры колебаний и волн.

Механические волны – процесс распространения механических колебаний в среде (жидкой, твердой, газообразной).Следует запомнить, что механические волны переносят энергию, форму, но не переносят массу.Важнейшей характеристикой волны является скорость ее распространения. Волны любой природы не распространяются в пространстве мгновенно, их скорость конечна.

По геометрии различают: сферические (пространственные), одномерные (плоские), спиральные волны.

Волна называется плоской, если ее волновые повеpхности пpедставляют собой паpаллельные дpуг дpугу плоскости, пеpпендикуляpные фазовой скоpости волны (pис.1.3). Следовательно, лучи плоской волны - суть паpаллельные пpямые.

Уравнение плоской волны::

 

Параметры:

Период колебаний Т – промежуток времени, через который состояние системы принимают одинаковые значения: u(t + T) = u(t).

Частота колебаний n – число колебаний в 1 секунду, величина, обратная периоду: n = 1/Т. Измеряется в герцах (Гц), имеет размерность с–1. Маятник, совершающий одно качание в секунду, колеблется с частотой 1 Гц

Фаза колебаний j – величина, показывающая, какая часть колебания прошла с начала процесса. Измеряется в угловых величинах – градусах или радианах.

Амплитуда колебаний А – максимальное значение, которое принимает колебательная система, «размах» колебания.

 

2. Звук -механич.продольн.волна,к-ая распростр-ся в упругих средах, имеет частоту от 16Гц до 20кГц. Различают виды звуков:

1.простой тон- чисто гармоническ.колебание,излучаемое камертоном(металлич. инструмент,издающий при ударе звук):

2.сложный тон- не синусоидально, но периодическое колебание (излучается различными музык.инструментами).

По теореме Фурье такое сложное колебание можно представить набором гармонических составляющих с разными частотами. Наим.частота наз-ся основным тоном,а кратные частоты – обертонами. Набор частот с указанием их относительной интенсивности(плотности потока энергии волны) наз-ся акустическим спктром. Спктр сложного тона линейсатый.

3.шум- звук,к-ый получается от сложения множества несогласованных источников. Спектр- непрерывистый (сплошной):

4.звуковой удар- кратковременное звуковое воздействие.Н-р: хлопок, взрыв.

 

Волновое сопротивление- отношение звукового давления в плоской волне к скорости колебания частиц среды. Характеризует степень жесткости среды(т.е. способность среды сопротивляться образованию деформаций) в бегущей волне. Выражается формулой:

P/V=p/c, P- звуковое давление, р- плотность, с- скорость звука, V- объем.

 

3. Объективные характеристики звука - характеристики, не зависящие от свойств приемника:

- интенсивность (сила звука) - энергия, проносимая звуковой волной за единицу времени через единицу площади, установленной перпендикулярно волне звука.

- частота основного тона.

- спектр звука - количество обертонов.

При частотах ниже 17 и выше 20000 Гц колебания давления уже не воспринимаются человеческим ухом. Продольные механические волны с частотой менее 17 Гц получили название инфразвука. Продольные механические волны с частотой, превышающей 20000 Гц, называют ультразвуком.

 

4.Эффе́кт До́плера — изменение частоты и длины волн, воспринимаемых наблюдателем(приемником волн), вследствие относительного движения источника волн и наблюдателя. Представим, что наблюдатель приближается с определенной скоростью к неподвижному источнику волн. При этом он встречает за один и тот же интервал времени больше волн, чем при отсутствии движения. Это означает, что воспринимаемая частота больше частоты волны, испускаемой источником. Так длина волны, частота и скорость распространения волны связаны между собой соотношением V= /, - длина волны.

Дифракция- явление огибания препятствий, к-ые сравнимы по своим размерам с длиной волны.

Интерференция- явление, при к-ром в результате наложения когерентных волн возникает либо усиление либо ослабление колебаний.

Опыт Юнга Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2. Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

5. УЗ- механическ. волна с частотой более 20кГц. УЗ представляет собой чередования сгущений и разряжения среды. В каждой среде скорость распростр-я УЗ одинакова. Особенность- узость пучка, что позволяет воздействовать на объекты локально. В неоднородных средах с мелкими включениями частиц имеет место явления дифракции(огибание препятствий). Проникновение УЗ в другую среду характеризуется коэффициентом проникновения() =L /L где длины УЗ после и до проникновения в среду.

Действие УЗ на ткани организма механическое, тепловое, химическое. Применение в медицине делится на 2 направления: метод исследования и диагностики, и метод действия. 1)эхоэнцефалография- опред.опухолей и отека мозга; кардиография- измерение сердца в динамике. 2) УЗ физиотерапия- механическое и тепловое воздействие на ткань; при операциях как «УЗ-скальпель»

 

6. Идеальная жидкость – воображаемая несжимаемая жидкость, лишенная вязкости и теплопроводности. В идеальной жидкости отсутствует внутреннее трение, она непрерывна и не имеет структуры.

Уравнение неразрывности - V 1 A 1 = V 2 A 2 Объемный расход во всякой трубке тока, ограниченной соседними линиями тока, должен быть в любой момент времени одинаков во всех ее поперечных сечениях

Уравнение Бернулли - р v2/ 2 + рст + р gh = const, в случае установившегося течения, полный напор одинаков во всех поперечных сечениях трубки тока. р v2/ 2 + рст = const – для гориз. участков.

 

 

7. Стационарный поток - поток, скорость которого в любом месте жидкости никогда не изменяется.

Ламинарное течение - упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения.

Турбулентное течение - форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа.

Линии – линии, касательные к которым совпадают во всех т. с направлением скорости в этих точках. При стационарном течении линии тока не меняются со временем.

Рейнольдса число - характеризующее соотношение между инерционными силами и силами вязкости: Re =rdv/m, где r — плотность, m — динамический коэффициент вязкости жидкости или газа, v — скорость потока.При R < Rekр возможно лишь ламинарное течение жидкости, а при Re > Rekр течение может стать турбулентным.

Кинематический коэффициент вязкости - отношение динамической вязкости жидкости или газа к их плотности.

8. Вязкость -внутреннее трение, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой

Уравнение Ньютона: F = (dv/dx)Sη.

Коэффициент вязкости - Коэффициент пропорциональности, зависящий от сорта жидкости или газа. Число, служащее для количественной характеристики свойства вязкости. Коэффициент внутреннего трения.

Неньютоновской жидкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости, течение которых подчиняется уравнению Ньютона. (Полимеры, крахмал, жидкое мыло кровь)

Ньютоновская -Если в движущейся жидкости её вязкость зависит только от её природы и температуры и не зависит от градиента скорости. (Вода и дизельное топливо)

9. Метод Стокса, В основе метода Стоксалежит формула для силы сопротивления, возникающей при движении шарика в вязкой жидкости, полученная Стоксом: Fc= 6πηVr. Чтобы косвенно измерить коэффициент вязкости η следует рассмотреть равномерное движение шарика в вязкой жидкости и применить условие равномерного движения: векторная сумма всех сил, действующая на шарик равна нулю.

. mg + FA + Fс=0 (всё в векторной форме!!!)

Теперь следует выразить силу тяжести (mg) и силу Архимеда (Fа) через известные величины. Приравнивая величины mg = Fа+Fс получаем выражение для вязкости:

η = (2/9)*g*(ρт - ρж)* r2 / v = (2/9) * g *(ρт- ρж)* r2* t / L. Непосредственно измеряются микрометром радиус шарика r (по диаметру), L - путь шарика в жидкости, t- время прохождения пути L. Для измерения вязкости по методу Стокса путь L берется не от поверхности жидкости, а между отметками 1 и 2. Это вызвано следующим обстоятельством. При выводе рабочей формулы для коэффициента вязкости по методу Стокса использовалось условие равномерного движения. В самом начале движения (начальная скорость шарика равна нулю) сила сопротивления также равна нулю и шарик имеет некоторое ускорение. По мере набора скорости сила сопротивления увеличивается, равнодействующая трех сил - уменьшается! Только после некоторой отметки движение можно считать равномерным (и то, - приблизительно).

10. Вискозиметр Освальда представляет своеобразную пипетку с расширением в виде шарика чуть выше тонкого капилляра - левое рабочее колено. В правое вспомогательное колено набирается жидкость (сначала с известной, потом с неизвестной вязкостью). Затем эта жидкость засасывается в шарик, и измеряется время ее истечения через капилляр. Как показывает опыт время истечения одинакового объема различной жидкости - разное. Это объясняется формулой Пуазейля, записанной для объема протекающей через капилляр жидкости:

V = πr 4 ΔP*t / 8ηL - чем больше коэффициент вязкости η, тем больше время истечения этой жидкости t.

Для получения рабочей формулы следует заменить в формуле Пуазейля разность давлений ΔP на гидростатическое давление ρgh (h = L). Тогда получится:

V = πr4ρg t / 8η. Записав эту формулу для двух одинаковых объемов - эталонной и исследуемой жидкости, приравняв правые части каждой формулы и заменив ρ/η=1/v, где v кинематическая вязкость, получили v=v0t/t0, где v0 и t0 кинематич.вязкость и время прохождения воды.

11. Формула Пуазёйля: При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.


Дата добавления: 2015-11-04; просмотров: 33 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.031 сек.)







<== предыдущая лекция | следующая лекция ==>