|
XIX — начале XX в. для устройства бесшовных монолитных полов, по свойствам, близким паркетным; из ксилолита также изготовлялись плитки. В последнее время к ксилолиту вновь возникает интерес у строителей.---------
Фибролит (от лат. fibra— волокно) получают из тонких длинных древесных стружек (/= 50...200 мм; Ь = 2...5 мм; 5 = 0,3...0,5 мм), называемых «древесная шерсть», и портландцемента (реже магнезиального вяжущего). Смесь из стружек и вяжущего формуется в виде плит, подпрессовывается и выдерживается до затвердевания вяжущего.
Длина плит — 2,4 и 3,0 м; ширина — 0,6 и 1,2 м; толщина — 30...100 мм; средняя плотность плит (марка) — 300; 400 и 500 кг/м3; прочность при изгибе — от 0,4 до 1,5 МПа; теплопроводность — 0,07...0,13 Вт/(м • К); водопоглощение (по массе) — не более 35...40 %.
Фибролитовые плиты применяют в качестве конструкционно-теплоизоляционного (марки 400 и 500) и теплоизоляционного (марка 300) материала для заполнения стен, перегородок, утепления перекрытий, но с обязательной защитой поверхностей от продувания.
Благодаря развитой системе открытых пор фибролит обладает хорошими акустическими свойствами, поэтому его используют как звукопоглощающий матерная.
Фибролитовые плиты можно использовать в качестве несъемной опалубки при возведении бетонных стен: в них фибролит остается как теплоизоляционный элемент стены.
’V : ГЛАВА 15. СТРОИТЕЛЬНЫЕ ПЛАСТМАССЫ
""У. ■ 15Л. ОБЩИЕ СВЕДЕНИЯ Л;Л
Пластмассы (пластики) — материалы, обязательным компонентом которых являются полимеры. В период формования изделий полимер находится в вязкотекучем или высокоэластичном состоянии, а в готовых материалах и изделиях — в отвержденном состоянии. Основные виды полимеров, используемые в строительных пластмассах, описаны в гл. 10. Кроме полимеров в состав большинства пластмасс входят наполнители, пластификаторы, красители и специальные добавки.
Пластмассы — относительно новый вид материалов. Первые пластмассы резина и эбонит (эластичный и твердый продукты вулканизации природного каучука) появились в середине XIX в., когда был открыт процесс вулканизации. В 1872 г. был получен целлулоид — пластмасса на основе модифицированной целлюлозы, а в 1887 г.— галалит — пластмасса на основе казеина, белковой составляющей молока. Первый синтетический полимер — фенол-формальдегидная смола и пластмассы на ее основе — появились в начале XX в. В середине XX в. началось производство пластмасс на основе поливинилхлорида, полистирола и других синтетических полимеров. В 50—60-х годах активно начало развиваться производство пластмасс на базе полиэтилена, эпоксидных и полиуретановых смол.
В наше время пластмассы заняли заметное место во всех отраслях хозяйства, в том числе и в строительстве. Несмотря на значительно более высокую стоимость, они оказались конкурентоспособными по отношению к традиционным строительным материалам. Основная причина этого объясняется высокой технологичностью пластмасс. Они легко перерабатываются в самые различные материалы и изделия, из которых, в свою очередь, чрезвычайно просто получать готовые конструкции. Яркий пример этому — линолеум, настилка которого сводится к раскатыванию рулона материала по поверхности пола и закреплению его клеем. Таким образом получается декоративное, гигиеничное и износостойкое покрытие пола с необходимыми тепло- и звукоизоляционными свойствами.
Свойства пластмасс. У пластмасс довольно необычный для строительных материалов набор свойств (как положительных, так и отрицательных):
• высокая прочность при малой плотности (рт < 1500 кг/м3, а у газонаполненных пластмасс уникально низкая плотность — 50...10 кг/м3);
• более низкий, чем у традиционных материалов, модуль упругости и соответственно высокая деформативность; заметная ползучесть (развитие деформаций при длительном воздействии нагрузок);
• высокая износостойкость при малой поверхностной твердости;
» водостойкость, водонепроницаемость и универсальная химическая стойкость (к кислотам, щелочам, растворам солей);
• невысокая теплостойкость (в основном 100...200° С; для некоторых пластмасс 300...350° С) и зависимость механических свойств от температуры;
• декоративность — способность окрашиваться в яркие тона и принимать нужную текстуру поверхности;
• хорошие электроизоляционные свойства и склонность к накапливанию статического электричества;
• склонность к старению (особенно под действием УФ-излучения и кислорода воздуха);
• горючесть, усугубляемая токсичностью продуктов горения;
• экологическая проблемность пластмасс.
Применение пластмасс в строительстве целесообразно и экономически оправданно в таких вариантах, когда при небольшом расходе полимера на единицу продукции (м2 или м3) достигается определенный технико-экономический эффект. Это, например, декоративные и гидроизоляционные полимерные пленки, листовые облицовочные материалы, покрытия полов, лаки, краски, клеи и мастики, трубы и другие погонажные изделия, санитарно-технические изделия, а также ультралегкие теплоизоляционные газонаполненные пластмассы (пено- и поропласты).
Состав пластмасс. Основные компоненты пластмасс: полимер, наполнитель, пластификатор, краситель и специальные добавки.
Полимер выполняет роль связующего и определяет основные свойства пластмассы.
Наполнитель уменьшает расход полимера и придает пластмассе определенные свойства. По виду и структуре наполнители могут быть порошкообразные (мел, тальк, древесная мука), грубодисперсные (стружка, песок, щебень), волокнистые (стекловолокно, целлюлозные волокна и т. п.), листовые (бумага, древесный шпон и т. п.). Волокнистые и листовые наполнители являются армирующими наполнителями, существенно повышающими прочность и модуль упругости пластмасс. Так, стеклопластики, углепластики, бумажнослоистые пластики очень прочные и легкие конструкционные материалы. >?
Пластмассы могут быть наполнены (до 90...95 % по объему) воздухом. Такие материалы, называемые иенопластами, обладают очень высокими теплоизоляционными свойствами.
Пластификаторы — вещества, повышающие эластичность пластмасс. Например, жесткий поливинилхлорид в линолеуме пластифицируется слаболетучими вязкими жидкостями (диоктилфталатом, трикрезилфосфатом и др.). Они, проникая между молекулами полимера, повышают их подвижность. Это делает материал пластичным. Пластификаторы также облегчают переработку пластмасс, снижая температуру перехода в вязкопластичное состояние.
Пигменты, применяемые в пластмассах, могут быть как минеральные, так и органические. Чтобы пластмасса длительно сохраняла цвета, от пигментов требуется в основном светостойкость, так как полимеры, будучи сами химически инертными, защищают пигменты от других агрессивных воздействий.
------ €табтшаторьг\гантиоксидинты — необходимыйткомпоненгмно=-
гих пластмасс, так как полимеры под действием солнечного света и кислорода воздуха стареют (происходит деструкция полимера и окислительная полимеризация), что приводит к потере эксплуатационных свойств и разрушению пластмасс.
Отвердители и вулканизаторы используются в тех случаях, когда необходимо произвести отверждение жидких олигомеров (например, отверждение эпоксидной смолы аминными отвердителями) или сшивку макромолекул термореактивного полимера (например, вулканизация каучука серой, отверждение фенолформальдегидных смол уротропином). В любом случае происходит укрупнение молекул исходных продуктов с образованием пространственных сеток с помощью низкомолекулярных веществ. В ряде случаев отвердителями могут служить кислород или влага, содержащиеся в воздухе.
Пластмассы и экология. Широкое использование в нашей жизни пластмасс породило новую экологическую проблему. Большинство полимеров и соответственно пластмасс — биологически инертные (безвредные для человека) материалы, поэтому может показаться, что пластмассы — экологически чистые материалы. В действительности это далеко не так. Производство синтетических полимеров связано со сложными и энергоемкими химическими процессами с вредными для человека мономерами, сопровождающимися вредными выбросами в атмосферу.
Готовые полимеры и материалы на их основе (при условии правильно проведенного синтеза и переработки) в большинстве своем безвредны. Однако отслужившие свой век пластмассовые изделия не вписываются в природный цикл: они не гниют и не разлагаются под действием природных агентов, поэтому их количество постоянно увеличивается. При сжигании полимеры разлагаются с выделением токсичных низкомолекулярных продуктов. Пластмассы на основе тер-
мопластичных полимеров могут использоваться вторично, но это не решает полностью проблемы утилизации пластмасс. Один из вариантов решения этой проблемы — получение биологически разлагаемых полимеров, разработке которых в настоящее время уделяется серьезное внимание.
15.2. ОСНОВЫ ТЕХНОЛОГИИ ПЛАСТМАСС
Полимерные материалы, как уже говорилось, отличаются технологичностью. Они могут перерабатываться в изделия самыми разнообразными методами. При этом параметры переработки (температура и давление) значительно ниже, чем при переработке таких материалов, как металлы, стекло и керамика. Способ обработки и ее режим определяются видом полимера и типом получаемого изделия.
Общая схема производства пластмасс включает традиционные процессы — дозировку и приготовление полимерной композиции, формование изделий и стабилизация их формы и физико-механических свойств.
Приготовление композиций производят на смесителях различных систем. Для перемешивания сухих композиций обычно используют турбулентные и шнековые смесители. Специфическим широко используемым способом приготовления полимерных композиций является вальцевание.
Вальцевание — операция, при которой масса перетирается в зазоре между обогреваемыми валками, вращающимися в противоположном направлении (рис. 15.1). Вальцевание позволяет равномерно перемешать компоненты смеси. При многократном пропускании массы через валки полимер в результате термомеханических воздействий переходит в пластично-вязкое состояние. Этот процесс называется пластикация.
Экструдирование — перемешивание массы в обогреваемом шнековом прессе (экструдере) с последующим продавливанием массы сквозь решетку для формования полуфабриката в виде гранул (такой экструдер называется гранулятором).
Формование изделий. Выбор метода формования зависит в основном от вида: получаемой продукции. Так, листовые материалы формуются обычно на каландрах,
\ трубы и погонажные профильные изделия экструдиру-
j ют, штучные изделия в
t
к____________________________________________
основном формуют литьем под давлением.
Каландрирование — процесс формования полотна заданной толщины и ширины из пластичной смеси (приготовленной, например, на вальцах) путем однократного пропускания между обогреваемыми полированными валками с последовательно уменьшающимся зазором. Схемы работы Г-об- разного и Z-образного каландров представлены на рис. 15.2. Каландрированием производят полимерные пленки. В частности, большую часть линолеума изготовляют вальцево-каландровым способом. Многослойный линолеум получают горячим дублированием заранее отформованных на каландрах пленок: защитной, декоративной и подкладочной (несущей) (см. рис. 15.5).
Экструзия — процесс получения профилированных изделий способом непрерывного выдавливания размягченной массы через формообразующее отверстие (мундштук). Экструзией производят трубы (рис. 15.3) и погонажные изделия (плинтусы, раскладки, «сайдинг», оконные профили и т. п.). Выпускают специальные экструдеры для формования линолеума (в том числе и двухслойного). На экструдерах формуют полимерные пленки в виде бесшовного рукава. Для этого формуется труба, внутрь которой подается воздух, раздувающий ее в тонкую пленку.
Литьем под давлением с помощью литьевых машин (рис. 15.4) получают небольшие изделия сложной конфигурации из смесей на основе термопластичных полимеров (например, изделия для санитар-
Р и с. 15.3. Схема работы экструдера при производстве труб: ' / г А '■ 1 — загрузочный бункер; 2 — шнек; 3 — формующая головка; 4 — калибрующая насадка; 5 —тянущее устройство; 6 — пустотообразователь «дорн» ■ |
Р и с. 15.4. Схема работы машины для литья под давлением: а плавление сырьевой массы; б— впрыск расплава в форму; в — размыкание формы; 1 — поршень; 2— загрузочный бункер; 3 — нагреватели; 4—• цилиндр; 5— разъемная форма; <5— изделие |
но-технических устройств, вентиляционные решетки, мелкие плитки и т. п.). Гранулированный полуфабрикат нагревается до вязко-текучего состояния в цилиндре (4) литьевой машины и плунжером (Г) впрыскивается в разъемную форму (5), охлаждаемую водой.
Горячее прессование используют в основном для формования изделий из термореактивных полимеров. Так, в частности, получают листовые материалы: бумажно-слоистый и деревослоистый пластик, сверхтвердые древесноволокнистые и древесно-стружечные плиты. Для листовых материалов используют многоэтажные прессы с масляным или паровым обогревом плит (/= 120... 150° С). На таких прессах формуют одновременно 5... 15 листов. В начале прессования полимер расплавляется, связывая все компоненты, а затем необратимо отверждается, фиксируя заданную форму изделия.
Горячим прессованием можно получать пенопласты с помощью веществ — газообразователей, разлагающихся с выделением газа при нагревании, т. е. в тот момент, когда полимер приобретает вязко-пластичную консистенцию. Вспенивание происходит при размыкании плит пресса. Получаемый при этом пенопласт имеет на поверхности плиты плотные корочки.
Пенопласты производят и другими методами. Очень простым способом получают полистирольный пенопласт из гранул полистирола, содержащих легкокипящую жидкость — изопентан. Наибольшее количество гранул помещают в замкнутую форму, которую опускают в горячую (85...95° С) воду. Полистирол размягчается, изопентан, вскипая, вспучивает гранулы. Расширившиеся гранулы занимают весь объем формы, слипаются друг с другом и образуют плиту или изделие другой формы.
Кроме перечисленных способов получения изделий из пластмасс используются еще много других методов: промазывание и пропитка основ; напыление пластмасс, сварка и склеивание.
Как уже отмечалось, технически и экономически выгодно применение пластмасс в строительстве в виде пленочных и листовых отделочных материалов, труб и других погонажных изделий, ультралегких газонаполненных пластмасс, а также клеев, мастик и других вспомогательных материалов. Большая доля полимерных материалов строительного назначения — материалы для полов.
Материалы для полов могут быть в виде рулонных покрытий — линолеумов и ворсовых (ковровых) покрытий, плиток и жидко-вязких составов, используемых для получения бесшовных покрытий пола.
Рулонные материалы. Линолеум (от лат. linum — лен, ткань и oleum
— масло) впервые появился во второй половине XIX. Он представлял собой грубую ткань, покрытую слоем пластической массы на основе высыхающих растительных масел (например, льняного) и пробковой муки. Эти материалы получили название «линолеум». Подобный линолеум под названием «глифталевый» выпускался вплоть до середины
XX в., когда он уступил место поливинилхлоридному.
В настоящее время производится много разновидностей ПВХ-ли- нолеума. Наиболе полно отвечает требованиям и строителей, и потребителей ПВХ-линолеум на теплозвукоизоляционной основе (рис. 15.5). Такой линолеум позволяет настилать полы непосредственно по стяжке без устройства специальных тепло- и звукоизоляционных прослоек. Линолеумные полы удобны в эксплуатации (легко моются и не требуют специального ухода) и декоративны. Однако они не рассчитаны на эксплуатацию в помещениях с интенсивным людским потоком. Для таких условий выпускается специальный линолеум с повышенной износостойкостью.
В последнее время вновь возник интерес к глифталевому линолеуму как к материалу на природном сырье.
Линолеум выпускают в рулонах шириной до 4 м, длиной не менее 12 м. Толщина в зависимости от вида линолеума 1,2...6 мм.
К основанию пола линолеум крепят на специальных мастиках. От правильности настилки во многом зависит его долговечность. Это относится и ко всем остальным полимерным материалам.
•. ъ.... с: V'1
■ ik’iyr'm-;
. 'V’r:,.
•'/ф
Ф.ыо7/:ш
Только при строгом соблюдении правил монтажа и эксплуатации пластмассы в полной мере проявляют свои положительные
свойства.
При массовом строительстве типовых зданий наиболее эффективный метод применения линолеума — изготовление на заводе полотнищ размером «на комнату» (с помощью сварки).
К рулонным материалам для полов, кроме линолеума относятся ворсовые (ковровые) покрытия. Они обладают высокими тепло- и звукоизоляционными свойствами, но уход за ними достаточно труден. Настилка таких полов целесообразна в гостиницах, офисах и других помещениях с малой интенсивностью движения и отсутствием загрязнений.
Плиточные материалы для полов имеют размер плиток от 30 х 30 до 50 х 50 см и могут быть получены как из ПВХ-материалов, так и на базе ворсовых покрытий. Из плиток можно составлять декоративные покрытия полов, которые можно ремонтировать, заменяя отдельные вышедшие из строя плитки. Слабым местом таких полов являются стыки.
В 90-х годах появился новый вид плиточных покрытий — «ламинат»
— крупноразмерные плитки из твердой древесно-волокнистой плиты, имеющие с лицевой стороны декоративное полимерное покрытие (например, имитирующее паркет) с высокой износостойкостью. Лами- натные покрытия полов легко собираются и разбираются благодаря специальным «замковым» сочленениям.
Бесшовные мастичные полы получают из сырьевых смесей на основе жидко-вязких олигомеров. Составы, содержащие, кроме того, наполнители и пигменты, наносятся на подготовленное основание пола слоем требуемой толщины (2... 10 м). Через 1...2 суток образуется ровное износостойкое и не имеющее швов покрытие пола. Такие покрытия отличаются водостойкостью, химической стойкостью, износостойкостью и хорошим сопротивлением ударным нагрузкам.
В зависимости от вида полимерного компонента различают составы на жидких каучукоподобных олигомерах, образующих эластичное покрытие, и термореактивных смолах (например, эпоксидных), образующих твердые покрытия. Такие полы целесообразны, например, для цехов предприятий пищевой промышленности, спортивных залов, коридоров в школах и т. п.
Отделочные материалы на основе пластмасс могут быть листовыми, пленочными, погонажными и окрасочными (последние рассмотрены в гл. 18).
Бумажно-слоистый пластик — листовой материал размером до 3000 х 1600 мм при толщине 0,5...3 мм, получаемый горячим прессованием 5... 15 слоев бумаги, пропитанной термореактивными полимерами: лицевые слои — прозрачным меламиноформальдегидным
полимером, а внутренние — фенолформальдегидным. Для верхнего лицевого слоя используется цветная бумага с рисунком (под дерево, ткань и т. п.), покрытая сверху прозрачной защитной бумагой, также имеющей пропитку.
Бумажно-слоистый пластик обладает высокой для пластмасс поверхностной твердостью, износо- и теплостойкостью. В основном его применяют для облицовки мебели для кухонь, встроенной мебели и столярных строительных изделий (двери и т. п.); для отделки стен на высоту 1...1,5 м помещений с большой интенсивностью эксплуатации (вестибюли, коридоры), а также, благодаря высокой водостойкости и гигиеничности, помещений ванных, лабораторий и т. п.
Декоративные пленочные материалы — один из наиболее перспективных видов пластмасс для внутренней отделки. Различают отделочные пленки безосновные и с подосновой (бумажной, тканевой).
Безосновные пленочные материалы — тонкие полимерные (главным образом поливинилхлоридные) пленки, окрашенные по всей толщине и имеющие с лицевой стороны рисунок или тиснение, которые имитируют древесину, ткань, керамическую плитку и т. п. Пленку выпускают в рулонах длиной 150 м, шириной 1500...1600 мм. С тыльной стороны пленка может иметь слой из так называемого «неумирающего» клея, прикрытый специальной защитной бумагой. Такая пленка выпускается меньшей ширины (500 мм) и в рулонах длиной 15 м. Беспод- основные пленки используют для отделки древесины, асбестоцементных листов и др.
Пленки на основе — рулонный отделочный материал, в котором цветная, обычно поливинилхлоридная, пленка сдублирована с бумажной или тканевой подосновой. Примером такого материала могут служить моющиеся обои, представляющие собой тонкую полимерную пленку, сформированную тем или иным способом (напылением, намазкой, дублированием) на поверхности бумажной подосновы. Такие материалы применяют для отделки стен, как и обычные обои, но там, где будет полезна их повышенная влагостойкость и износостойкость (например, для кухонь, прихожих, коридоров в больницах).
Пленки для натяжных потолков — новый вариант пленочного отделочного материала. Такие пленки имеют высокую упругость и прочность и могут быть окрашены в любые цвета. Их с большим усилием натягивают и закрепляют на арматуре, установленной на стене. При этом образуется подвесной декоративный потолок, за которым на перекрытии проходят всевозможные коммуникации (электропроводка, вентиляции и т. п.). Применяют натяжные потолки в магазинах, кафе, офисах и т. п.
Облицовочные листы и рейки (сайдинг) имитируют традиционные виды облицовки зданий — дерево, кирпич, природный камень. Наибольшее распространение для облицовки индивидуальных домов, торговых павильонов и других сооружений подобного типа приобрели
материалы, имитирующие облицовочную доску «вагонку»,— пластмассовые рейки под названием «сайдинг». Они имеют текстуру древесины и могут бьггь окрашены в любые цвета. Рейки сайдинга легко соединяются друг с другом. Получают рейки либо экструзией из ПВХ-композиций, либо нанесением полимерных пленок на металлическую (алюминиевую) основу.
Листовые полимерные облицовоч- HBie материалы, имитирующие, например, кирпичную кладку, кладку из природного камня, изготавливают из композиций на основе термопластов.
-Необходимая“текстура-образуется“путем—лени5ЬШетвв^в—нмшаданкняуне—
„ л г- ни; г — нащельники; д — плинтус
горячего прессования листов-полуфабрикатов, которвш могут быть окрашены как в массе, так и по поверхности.
Погонажные изделия — длинномерные изделия разнообразных профилей: плинтусы, рейки, поручни для лестничных перил, раскладки для крепления листовых материалов, нащельники и т. п. (рис. 15.6). Получают погонажные изделия главным образом из поливинилхлоридных композиций методом экструзии.
Использование полимерных погонажных изделий — одна из сторон малой индустриализации строительства. Например, применение пластмассовых поручней из пластифицированного ПВХ существенно ускоряет отделку лестниц, Поручни, поступающие на стройку в виде бухт, нагревают в воде до 60...70° С. В размягченном виде они легко надеваются на металлические перила, а после остывания плотно охватывают их.
Конструкционно-отделочные пластмассы. К ним относятся плитные и листовые материалы: древесностружечные плиты (см. § 3.6), древеснослоистые пластики, сверхтвердые древесноволокнистые плиты, стеклопластик и другие материалы, а также формованные элементы для архитектуры малых форм: киосков, павильонов и т. п.
Стеклопластики — листовой материал, получаемый пропиткой стеклянного волокна или стеклоткани термореактивными олигомерами (смолами) с последующим их отверждением. Кроме стеклянных волокон, возможно применение волокон более прочных и с большим модулем упругости (например, углеродных). Стеклянное волокно (или стеклянная ткань) играет роль арматуры, благодаря чему обеспечивается высокая прочность материала при изгибе и растяжении (200...500 МПа) при относительно небольшой плотности (1500... 1700 кг/м3). Роль полимерного связующего заключается в том, чтобы придать
материалу монолитность и обеспечить равномерное распределение напряжений от внешних нагрузок между всеми стеклянными волокнами. Стеклопластики — типичный композиционный материал.
Чаще всего для пропитки стекловолокна применяют ненасыщенные полиэфирные или эпоксидные смолы, обладающие высокой прочностью и адгезией к стекловолокну и химической стойкостью. Стеклопластики выпускают в виде плоских или волнистых листов, окрашенных в различные цвета, которые используют для декоративной наружной облицовки и устройства кровель. Кроме того, из стеклопластиков изготовляют трехслойные пенопластовые панели, трубы, санитарно-технические изделия и покровные элементы для трубопроводов и химических аппаратов и т. п.
Древеснослоистые пластики — листовой материал, получаемый горячим прессованием древесного шпона, пропитанного термореактивными полимерами (обычно фенолоформальдегидными),— прочный водо-, масло- и бензостойкий материал, используемый для каркасных перегородок, клееных деревянных конструкций и других целей (например, для изготовления точной опалубки многоразового использования).
Теплоизоляционные полимерные материалы — самые эффективные теплоизоляционные материалы с пористостью более 90 %. Они могут быть в виде плит или других иделий, а также в виде жидких композиций, вспениваемых и отверждаемых на месте укладки (подробно полимерные теплоизоляционные материалы описаны в § 17.3).
Кровельные, гидроизоляционные и санитарно-технические материалы и изделия. Использование полимеров для получения кровельных, гидроизоляционных и санитарно-технических материалов и изделий базируется на их высокой водостойкости и коррозионной стойкости.
При получении кровельных и гидроизоляционных материалов поли- меры используют в роли:______________________________________________
• модификаторов традиционных битумных материалов;
• самостоятельных материалов в виде пленок, мембран и мастичных составов (подробнее см. § 16.4).
Полимерные трубы с каждым годом находят все более широкое применение в строительстве, вытесняя традиционные стальные и чугунные. Пластмассовые трубы легче металлических в 4...5 раз при одинаковой пропускной способности. Они н^йокрываются отложениями и не корродируют даже в воде с агрессивными веществами. Благодаря низкой теплопроводности вода в пластмассовых трубах имеет меньше шансов замерзнуть; при этом даже в случае замерзания труба не лопается благодаря пластичности пластмассы.
Труб,ы в основном изготовляют методом экструзии из композиций на основе термопластов (полиэтилена, полипропилена, поливинилхлорида и др.). Такие трубы обладают невысокой теплостойкостью (не 298
«*Лк» ал,-ЩШУ > ЩЦУцУл: У. а) б) в) Рис. 15.7. Изделия для канализации из ПВХ: а — труба с муфтой колокольного типа; б — угол 90° с муфтой колокольного типа; в — отвод с муфтой колокольного типа и контрольным глазком |
|
Дата добавления: 2015-10-21; просмотров: 29 | Нарушение авторских прав
<== предыдущая лекция | | | следующая лекция ==> |