|
ВАРИАНТ 2
B2 № 263864. В аэропорту чемоданы пассажиров поднимают в зал выдачи багажа по транспортерной ленте. При проектировании транспортера необходимо учитывать допустимую силу натяжения ленты транспортера. На рисунке изображена зависимость натяжения ленты от угла наклона транспортера к горизонту при расчетной нагрузке. На оси абсцисс откладывается угол подъема в градусах, на оси ординат – сила натяжения транспортерной ленты (в килограммах силы). При каком угле наклона сила натяжения достигает 150 кгс? Ответ дайте в градусах.
Решение.
Из графика видно, что сила натяжения достигает 150 кгс при угле наклона 45 градусов.
Ответ: 45.
B3 № 245000.
Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.).Ответ дайте в квадратных сантиметрах.
Решение.
Площадь четырехугольника (в том числе невыпуклого) равна половине произведения диагоналей на синус угла между ними. Диагонали изображенного на рисунке четырехугольника являются взаимно перпендикулярными диагоналями квадратов со стороной 1. Поэтому длины диагоналей равны , а синус угла между ними равен 1. Тем самым, площадь четырехугольника равна 1.
B4 № 26674. Для изготовления книжных полок требуется заказать 48 одинаковых стекол в одной из трех фирм. Площадь каждого стекла 0,25 . В таблице приведены цены на стекло, а также на резку стекол и шлифовку края. Сколько рублей будет стоить самый дешевый заказ?
Фирма | Цена стекла (руб. за 1 м2 ) | Резка и шлифовка (руб. за одно стекло) |
A | ||
Б | ||
В |
Решение.
Общая площадь стекла равна 48 0,25 = 12 . Рассмотрим различные варианты.
Стоимость заказа в фирме А складывается из стоимости стекла 420 12 = 5040 руб. и стоимости его резки и шлифовки 75 48 = 3600 руб. и равна 8640 руб.
Стоимость заказа в фирме Б складывается из стоимости стекла 440 12 = 5280 руб. и стоимости его резки и шлифовки 65 48 = 3120 руб. и равна 8400 руб.
Стоимость заказа в фирме В складывается из стоимости стекла 470 12 = 5640 руб. и стоимости его резки и шлифовки 55 48 = 2640 руб. и равна 8280 руб.
Стоимость самого дешевого заказа составит 8280 рублей.
Ответ: 8280.
B5 № 77379. Решите уравнение .
Решение.
Перейдем к одному основанию степени:
Ответ: −2.
B6 № 27882. Угол равен , где – центр окружности. Его сторона касается окружности. Найдите величину меньшей дуги окружности, заключенной внутри этого угла. Ответ дайте в градусах.
Решение.
касательная к окружности перпендикулярна радиусу, центральный угол равен дуге, на которую он опирается, значит, треугольник – прямоугольный и
Ответ: 62.
B7 № 26860. Найдите значение выражения .
Решение.
Используем формулу
.
Имеем:
.
Ответ: −1.
B8 № 27496. На рисунке изображен график производной функции f(x), определенной на интервале (−11; 11). Найдите количество точек экстремума функции f(x) на отрезке [−10; 10].
Решение.
Точки экстремума соответствуют точкам смены знака производной — изображенным на графике нулем производной. Производная обращается в нуль в точках −6, −2, 2, 6, 9. На отрезке [−10; 10] функция имеет 5 точек экстремума.
Ответ: 5.
B10 № 285925. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?
Решение.
В первом туре Руслан Орлов может сыграть с 26 − 1 = 25 бадминтонистами, из которых 9 — из России. Значит вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна
Ответ: 0,36.
B11 № 25721. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна сумме площадей большого и маленького параллелепипедов с ребрами 1, 5, 7 и 1, 1, 2, уменьшенной на 4 площади прямоугольника со сторонами 1, 2 — передней грани маленького параллелепипеда, излишне учтенной при расчете площадей поверхности параллелепипедов:
Ответ: 96.
B12 № 27970. Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием см. Расстояние от линзы до лампочки может изменяться в пределах от 30 до 50 см, а расстояние от линзы до экрана – в пределах от 150 до 180 см. Изображение на экране будет четким, если выполнено соотношение . Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы еe изображение на экране было чeтким. Ответ выразите в сантиметрах.
Решение.
Поскольку имеем:
.
Наименьшему возможному значению соответствует наибольшее значение левой части полученного равенства, и, соответственно, наибольшее возможное значение правой части равенства. Разность в правой части равенства достигает наибольшего значения при наименьшем значении вычитаемого , которое достигается при наибольшем возможном значении знаменателя . Поэтому , откуда
см
По условию лампочка должна находиться на расстоянии от 30 до 50 см от линзы. Найденное значение см удовлетворяет условию.
Ответ: 36.
B13 № 99599. Из пункта A круговой трассы выехал велосипедист, а через 30 минут следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.
Решение.
К моменту первого обгона мотоциклист за 10 минут проехал столько же, сколько велосипедист за 40 минут, следовательно, его скорость в 4 раза больше. Поэтому, если скорость велосипедиста принять за x км/час, то скорость мотоциклиста будет равна 4x, а скорость их сближения — 3 x км/час.
C другой стороны, второй раз мотоциклист догнал велосипедиста за 30 минут, за это время он проехал на 30 км больше. Следовательно, скорость их сближения составлят 60 км/час.
Итак, 3 х = 60 км/час, откуда скорость велосипедиста равна 20 км/час, а скорость мотоциклиста равна 80 км/час.
B14 № 77493. Найдите точку минимума функции , принадлежащую промежутку .
Решение.
Найдем производную заданной функции:
.
Найдем нули производной:
Определим знаки производной функции и изобразим на рисунке поведение функции:
Искомая точка минимума . Ответ: 0,5.
Дата добавления: 2015-10-21; просмотров: 1038 | Нарушение авторских прав
<== предыдущая лекция | | | следующая лекция ==> |
магические шесты-посохи | | |