Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

2 Не в философии, а в самой науке существовала гносеологическая линия, которая, разрабатывая сущность понимания системы, долгое время вообще не использовала этого термина. С момента зарождения цель 6 страница



Важной характеристикой адронов является также внутренняя чётность Р, связанная с операцией пространств, инверсии: Р принимает значения ±1.

Для всех Э. ч. с ненулевыми значениями хотя бы одного из зарядов О, L, В, Y (S) и очарования Ch существуют античастицы с теми же значениями массы т, времени жизни t, спина J и для адронов изотопического спина 1, но с противоположными знаками всех зарядов и для барионов с противоположным знаком внутренней чётности Р. Частицы, не имеющие античастиц, называются абсолютно (истинно) нейтральными. Абсолютно нейтральные адроны обладают специальным квантовым числом - зарядовой чётностью (т. е. чётностью по отношению к операции зарядового сопряжения) С со значениями ±1; примерами таких частиц могут служить фотон и p0.

Квантовые числа Э. ч. разделяются на точные (т. е. такие, которые связаны с физическими величинами, сохраняющимися во всех процессах) и неточные (для которых соответствующие физические величины в части процессов не сохраняются). Спин J связан со строгим законом сохранения момента количества движения и потому является точным квантовым числом. Другие точные квантовые числа: Q, L, В; по современным данным, они сохраняются при всех превращениях Э. ч. Стабильность протона есть непосредственное выражение сохранения В (нет, например, распада р ® е+ + g). Однако большинство квантовых чисел адронов неточные. Изотопический спин, сохраняясь в сильных взаимодействиях, не сохраняется в электромагнитных и слабых взаимодействиях. Странность и очарование сохраняются в сильных и электромагнитных взаимодействиях, но не сохраняются в слабых взаимодействиях. Слабые взаимодействия изменяют также внутреннюю и зарядовую чётности. С гораздо большей степенью точности сохраняется комбинированная чётность СР, однако и она нарушается в некоторых процессах, обусловленных слабыми взаимодействиями. Причины, вызывающие несохранение многих квантовых чисел адронов, неясны и, по-видимому, связаны как с природой этих квантовых чисел, так и с глубинной структурой электромагнитных и слабых взаимодействий. Сохранение или несохранение тех или иных квантовых чисел - одно из существенных проявлений различий классов взаимодействий Э. ч.

20. О́бщая тео́рия относи́тельности —геометрическая теория тяготения, развивающая специальную теорию относительности(СТО), опубликованная Альбертом Эйнштейном в 1915—1916 годах.[1][2] В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрических теорий тяготения использованиемуравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей.



ОТО в настоящее время — самая успешная теория гравитации, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919 году, Артур Эддингтонсообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что качественно и количественно подтвердило предсказания общей теории относительности[. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационном поле и, пока лишь косвенно, гравитационное излучение[4]. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр[5].

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории, а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообщесингулярностей пространства-времени. Для решения этих проблем был предложен рядальтернативных теорий, некоторые из которых также являются квантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютонаявляется приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями. Основным отличием СТО от классической механики является зависимость (наблюдаемых) пространственных и временных характеристик от скорости.

Центральное место в специальной теории относительности занимают преобразования Лоренца, которые позволяют преобразовывать пространственно-временные координаты событий при переходе от одной инерциальной системы отсчета к другой.

Специальная теория относительности была создана Альбертом Эйнштейном в работе 1905 года «К электродинамике движущихся тел». Несколько ранее к аналогичным выводам пришел А. Пуанкаре, который впервые назвал преобразования координат и времени между различными системами отсчёта «преобразования Лоренца»

21. Пространство и время в теории относительности А. Эйнштейна

Специальная теория относительности, созданная в 1905 г. А. Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея - Ньютона и электродинамики Максвелла - Лоренца. "Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая, таким образом,оказывается ее частным случаем".

Исходным пунктом этой теории стал принцип относительности. Классический принцип относительности был сформулирован еще Г. Галилеем: "Если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой". Такие системы называются инерциальными, поскольку движение в них подчиняется закону инерции: "Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, если только оно не вынуждено изменить его под влиянием движущихся сил".

Из принципа относительности следует, что между покоем и движением - если оно равномерно и прямолинейно - нет никакой принципиальной разницы. Разница только в точке зрения.

Таким образом, слово "относительно" в названии принципа Галилея не скрывает в себе ничего особенного. Оно не имеет никакого иного смысла, кроме того, который мы вкладываем в движение о том, что движение или покой - всегда движение или покой относительно чего-то, что служит нам системой отсчета. Это, конечно, не означает, что между покоем и равномерным движением нет никакой разницы. Но понятие покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета.

Если классический принцип относительности утверждал инвариантность законов механики во всех инерциальных системах отсчета, то в специальной теории относительности данный принцип был распространен также на законы электродинамики, а общая теория относительности утверждала инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных. Неинерциальными называются системы отсчета, движущиеся с замедлением или ускорением.

В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно-временной континуум, пространственно-временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тел к скорости света в вакууме (300 000 км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

Находясь в сопутствующей системе отсчета, то есть двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и части будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и изменить. Так, если воображаемый релятивистский корабль типа фотонной ракеты отправится к далеким звездам, то после возвращения его на Землю времени в системе корабля пройдет существенно меньше, чем на Земле, и это различие будет тем больше, чем дальше совершается полет, а скорость корабля будет ближе к скорости света. Разница может измеряться даже сотнями и тысячами лет, в результате чего экипаж корабля сразу перенесется в близкое или отдаленное будущее, минуя промежуточное время, поскольку ракета вместе с экипажем выпала из хода развития на Земле.

Подобные процессы замедления хода времени в зависимости от скорости движения реально регистрируются сейчас в измерениях длины пробега мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. Мезоны существуют в течении 10-6 - 10-15с (в зависимости от типа частиц) и после своего возникновения распадаются на небольшом расстоянии от места рождения. Все это может быть зарегистрировано измерительными устройствами по следам пробегов частиц. Но если мезон движется со скоростью, близкой к скорости света, то временные процессы в нем замедляются, период распада увеличивается (в тысячи и десятки тысяч раз), и соответственно возрастает длина пробега от рождения до распада.

Итак, специальная теория относительности базируется на расширенном принципе относительности Галилея. Кроме того, она использует еще одно новое положение: скорость распространения света (в пустоте) одинакова во всех инерциальных системах отсчета.

Но почему так важна эта скорость, что суждение о ней приравнивается по значению к принципу относительности? Дело в том, что мы здесь сталкиваемся со второй универсальной физической константой. Скорость света - это самая большая из всех скоростей в природе, предельная скорость физических взаимодействий. Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорость этих тел всегда складывается с другими скоростями. В этом смысле скорости относительны: их величина зависит от точки зрения. А скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, нам не нужно указывать систему отсчета.

Абсолютность скорости света не противоречит принципу относительности и полностью совместима с ним. Постоянство этой скорости - закон природы, а поэтому - именно в соответствии с принципом относительности - он справедлив во всех инерциальных системах отсчета.

Скорость света - это верхний предел для скорости перемещения любых тел в природы, для скорости распространения любых волн, любых сигналов. Она максимальна - это абсолютный рекорд скорости.

"Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщит телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света". Поэтому часто говорят, что скорость света - предельная скорость передачи информации. И предельная скорость любых физических взаимодействий, да и вообще всех мыслимых взаимодействий в мире.

Со скорость света тесно связано решение проблемы одновременности, которая тоже оказывается относительной, то есть зависящей от точки зрения. В классической механике, которая считала время абсолютным, абсолютной является и одновременность.

В общей теории относительности были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Эта теория подвела физические основания под неевклидовы геометрии и связала кривизну пространства и отступление его метрики от евклидовой с действием гравитационных полей, создаваемых массами тел. Общая теория относительности исходит из принципа эквивалентности инерционной и гравитационной масс, количественное равенство которых давно было установлено в классической физике. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g, то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.

Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это - модель пространства. Расположим на этом листе большие и маленькие шарики - модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана).

Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца - достаточно небольшой звезды по космическим меркам - влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала ничего нет. Замедление вблизи Солнца составляет около 0,0002 с.

Одно из самых фантастических предсказаний общей теории относительности - полная остановка времени в очень сильном поле тяготения. Замедление времени тем больше, чем сильнее тяготение. Замедление времени проявляется в гравитационном красном смещении света: чем сильнее тяготение, тем больше увеличивается длина волны и уменьшается его частота. При определенных условиях длина волны может устремится к бесконечности, а ее частота - к нулю.

Со светом, испускаемым Солнцем, это могло бы случится, если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца равен 700 000 км). Из-за такого сжатия сила тяготения на поверхности, откуда и исходит свет, возрастает на столько, что гравитационное красное смещение окажется действительно бесконечным.

С нашим Солнцем этого никогда на самом деле не произойдет. Но другие звезды, массы которых в три и более раз превышают массу Солнца, в конце своей жизни и действительно испытывают, скорее всего, быстрое катастрофическое сжатие под действием своего собственного тяготения. Это приведет их к состоянию черной дыры. Черная дыра - это физическое тело, создающее столь сильное тяготение, что красное смещение для света, испускаемого вблизи него, способно обратиться в бесконечность.

Физики и астрономы совершенно уверены, что черные дыры существуют в природе, хотя до сих пор их обнаружить не удалось. Трудности астрономических поисков связаны с самой природой этих необычных объектов. Ведь бесконечное красное смещение, из-за которого обращается в нуль частота принимаемого света, делает их просто невидимыми. Они не светят, и потому в полном смысле этого слова являются черными. Лишь по ряду косвенных признаков можно надеяться заметить черную дыру, например, в системе двойной звезды, где ее партнером была бы обычная звезда. Из наблюдений движения видимой звезды в общем поле тяготения такой пары можно было бы оценить массу невидимой звезды, и если эта величина превысит массу Солнца в три и более раз, можно будет утверждать, что мы нашли черную дыру.

Сейчас имеется несколько хорошо изученных двойных систем, в которых масса невидимого партнера оценивается в 5 или даже 8 масс Солнца. Скорее всего, это и есть черные дыры, но астрономы до уточнения этих оценок предпочитают называть эти объекты кандидатами в черные дыры.

Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронной звезды, а вблизи черной дыры, у ее гравитационного радиуса, оно столь велико, что время там как бы замирает.

Для тела, попадающего в поле тяготения черной дыры, образованной массой, равной 3 массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса занимает всего около часа. Но по часам, которые покоятся вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело к гравитационному радиусу, тем более медленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигает его. В этом проявляется замедление времени вблизи черной дыры. Таким образом, материя влияет на свойства пространства и времени.

Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени. Разработанная теория суперструн, которая представляет элементарные частицы в качестве гармонических колебаний этих струн и связывает физику с геометрией, исходит из многомерности пространства. А это означает, что мы на новом этапе развития науки, на новом уровне познания возвращаемся к предсказаниям А. Эйнштейна 1930 г.: "Мы приходим к странному выводу: сейчас нам начинает казаться, что первичную роль играет пространство, материя же должна быть получена из пространства, так сказать, на следующем этапе. Мы всегда рассматривали материю первичной, а пространство вторичным. Пространство, образно говоря, берет сейчас реванш и "съедает" материю". Возможно, существует квант пространства, фундаментальная длина L. Введя это понятие, мы можем избежать многих трудностей современных квантовых теорий. Если ее существование подтвердится, то L станет третьей (кроме постоянной Планка и скорости света в пустоте) фундаментальной постоянной в физике. Из существования кванта пространства также следует существование кванта времени (равного L/c), ограничивающего точность определения временных интервалов.

22. Аберра́ция све́та (лат. aberratio, от ab от и errare блуждать, уклоняться) — изменение направления распространения света (излучения) при переходе из одной системы отсчёта к другой[1].

При астрономических наблюдениях аберрация света приводит к изменению положения звёзд на небесной сфере вследствие изменения направления скорости движения Земли. Различают годичную, суточную и вековую аберрации. Годичная аберрация связана с движением Земли вокруг Солнца. Суточная — обусловлена вращением Земли вокруг своей оси. Вековая аберрация учитывает эффект движения солнечной системы вокруг центра Галактики[2].

Явление аберрации света приводит также к неизотропности излучения движущегося источника. Если в системе покоя источника его излучениеизотропно, то в системе отсчёта относительно которой он движется, это излучение будет неизотропным, с повышением интенсивности в направлении движения источника[1].

23. Экспериме́нт Мессбауэра — проверка замедления хода времени в поле тяготения (экспериментальное подтверждение существования гравитационного красного смещения), осуществлённая в 1960 году сотрудниками Гарвардского университетаРобертом Паундом и Гленом Ребкой в лабораторном контролируемом эксперименте. Полученное значение в пределах ошибок эксперимента (10 %) блестяще подтвердило принцип эквивалентности и основанную на нём общую теорию относительностиЭйнштейна. Позже (в 1964 году) в подобном эксперименте совпадение измеренного и теоретического значений проверено с точностью около 1 %.

Для определения разности темпа хода времени в разнесённых по высоте точках Паунд и Ребка использовали измерения частоты фотонов в двух точках вдоль их траектории: в точке испускания и в точке поглощения. Разность в измеренной частоте в верхней и нижней точках указывает на разность хода времени в этих точках.

Фотон, испускаемый ядром 57Fe в переходе с энергией 14,4 кэВ, проходил расстояние h = 22,5 м по вертикали в поле тяготения Земли и резонансно поглощался мишенью из того же материала. Эксперимент использовал эффект Мёссбауэра, который обеспечивает поглощение импульса отдачи при испускании и поглощении фотона не отдельным ядром атома, а всем кристаллом (точнее, его макроскопической частью), так что энергия фотона при излучении практически не тратится на отдачу. Согласно принципу эквивалентности, относительное изменение частоты света для фотона, испущенного в точке сгравитационным потенциалом и поглощённого в точке с гравитационным потенциалом , равно . В условиях эксперимента относительное изменение частоты света теоретически составило , где g — ускорение свободного падения, h — расстояние, c — скорость света. Точности имеющейся у Паунда и Ребки аппаратуры не хватало для таких измерений. Тогда исследователи придумали остроумный приём для повышения точности измерений сдвига частоты: они догадались двигать источник фотонов вверх и вниз со скоростью , где было некоторой постоянной частотой, несколько десятков герц, а было подобрано так, чтобы доплеровский сдвиг частоты от него намного превышал предполагаемый гравитационный сдвиг частот. Гравитационное красное смещение, вызванное различием гравитационного замедления времени в точках излучения и приёма, добавляется кдоплеровскому смещению и гравитационный относительный сдвиг частоты можно оценить по изменениям легко регистрируемого доплеровского смещения. Вначале Паунд и Ребка получили значение относительного сдвига частоты в 4 раза больше ожидаемого. Это различие объяснялось разностью температур источника и мишени, что было указано Джозефсоном. При учёте поправок на разность температур был получен окончательный результат для гравитационного смещения частоты: .

24. В 1934 г. Э. Ферми решил получить трансурановые элементы, облучая 238U нейтронами. Идея Э. Ферми заключалась в том, что в результате β--распада изотопа 239U образуется химический элемент с порядковым номером Z = 93. Однако идентифицировать образование 93-его элемента не удавалось. Вместо этого в результате радиохимического анализа радиоактивных элементов, выполненного О.Ганом и Ф.Штрассманом, было показано, что одним из продуктов облучения урана нейтронами является барий (Z = 56) – химический элемент среднего атомного веса, в то время как согласно предположению теории Ферми должны были получаться трансурановые элементы.
Л. Мейтнер и О. Фриш высказали предположение, что в результате захвата нейтрона ядром урана происходит развал составного ядра на две части

92U + n → 56Ba + 36Kr + xn.

Процесс деления урана сопровождается появлением вторичных нейтронов (x > 1), способных вызвать деление других ядер урана, что открывает потенциальную возможность возникновения цепной реакции деления – один нейтрон может дать начало разветвленной цепи делений ядер урана. При этом число разделившихся ядер должно возрастать экспоненциально. Н. Бор и Дж. Уиллер рассчитали критическую энергию необходимую, чтобы ядро 236U, образовавшееся в результате захвата нейтрона изотопом 235U, разделилось. Эта величина равна 6,2 МэВ, что меньше энергии возбуждения изотопа 236U, образующегося при захвате теплового нейтрона 235U. Поэтому при захвате тепловых нейтронов возможна цепная реакция деления 235U. Для наиболее распространенного изотопа 238U критическая энергия равна 5,9 МэВ, в то время как при захвате теплового нейтрона энергия возбуждения образовавшегося ядра 239U составляет только 5,2 МэВ. Поэтому цепная реакция деления наиболее распространенного в природе изотопа 238U под действием тепловых нейтронов оказывается невозможной. В одном акте деления высвобождается энергия ≈ 200 МэВ (для сравнения в химических реакциях горения в одном акте реакции выделяется энергия ≈ 10 эВ). Возможности создания условий для цепной реакции деления открыли перспективы использования энергии цепной реакции для создания атомных реакторов и атомного оружия. Первый ядерный реактор был построен Э.Ферми в США в 1942 г. В СССР первый ядерный реактор был запущен под руководством И.Курчатова в 1946 г. В 1954 г. в г. Обнинске начала работать первая в мире атомная электро­станция. В настоящее время электрическая энергия вырабатывается примерно в 440 ядерных реакторах в 30 странах мира.
В 1940 г. Г.Флеров и К.Петржак открыли спонтанное деление урана. О сложности проведения эксперимента свидетельствуют следующие цифры. Парциальный период полураспада по отношению спонтанному делению изотопа 238U составляет 1016–1017 лет, в то время как период распада изотопа238U составляет 4.5∙109 лет. Основным каналом распада изотопа 238U является α-распад. Для того, чтобы наблюдать спонтанное деление изотопа 238U, нужно было регистрировать один акт деления на фоне 107–108 актов α-распада.
Вероятность спонтанного деления в основном определяется проницаемостью барьера деления. Вероятность спонтанного деления увеличивается с увеличением заряда ядра, т.к. при этом увеличивается параметр деления Z2/A. В изотопах Z < 92-95 деление происходит преимущественно с образованием двух осколков деления с отношением масс тяжёлого и лёгкого осколков 3:2. В изотопах Z > 100 преобладает симметричное деление с образованием одинаковых по массе осколков.

24. На протяжении веков человек стремился разгадать тайну великого мирового «порядка» Вселенной, которую древнегреческие философы и назвали Космосом (в переводе с греческого - «порядок», «красота»), в отличие от Хаоса, предшествовавшего, как они считали, появлению Космоса.

Первые, дошедшие до нас естественнонаучные представления об окружающей нас Вселенной сформулировали древнегреческие философы в 7-5 вв. до н. э. Их натурфилософские учения, опирались на накопленные ранее астрономические знания египтян, шумеров, вавилонян, арийцев, но отличались существенной ролью объясняющих гипотез, стремлением проникнуть в скрытый механизм явлений.

Наблюдение круглых дисков Солнца, Луны, закругленной линии горизонта, а так же границы тени Земли, наползающей на луну при ее затмениях, правильная повторяемость дня и ночи, времен года, восходов и заходов светил - все это наводило на мысль, что в основе строения вселенной лежит принцип круговых форм и движений, «цикличности» и равномерности изменений. Но вплоть до 2 в. до н. э. не существовало отдельного учения о небе, которое объеденило бы все знания в этой области в единую систему. Представления о небесных явлениях, как и явлениях «в верхнем воздухе» - буквально о «метеорных явлениях», долгое время входили в общие умозрительные учения о природе в целом. Эти учения несколько позднее стали называть физикой (от греческого слова «фюзис» - природа - в смысле периоды, существа вещей и явлений). Главным содержанием этой древней полу философской «физики», или в нашем понимании - скорее натурфилософии, включавшей в качестве едва ли не главных элементов космологию и космогонию, были поиски того неизменного начала, которое, как думали, лежит в основе мира изменчивых явлений.


Дата добавления: 2015-10-21; просмотров: 17 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.014 сек.)







<== предыдущая лекция | следующая лекция ==>