Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

так называется один из способов количественного определения содержания веществ в растворах; методы К. применимы к количественному определению всех тех веществ, которые дают окрашенные растворы,



Колориметрия

так называется один из способов количественного определения содержания веществ в растворах; методы К. применимы к количественному определению всех тех веществ, которые дают окрашенные растворы, или могут быть, с помощью какой-либо реакции, превращены в растворе в окрашенное соединение. Колориметрические методы основываются на фотометрическом сравнении густоты окраски исследуемого раствора, рассматриваемого в пропущенном свете, с окраской нормального раствора, содержащего определенное количество этого красящего вещества, или же с окраской некоторой эмпирически подобранной окрашенной середины, принятой за норму. В основе К. лежат следующие положения: 1) светопоглощающая сила раствора окрашенного вещества в бесцветном растворителе растет пропорционально концентрации и толщине слоя жидкости, следовательно: 2) если приготовить два раствора разной концентрации того же красящего вещества в том же бесцветном растворителе, и найти такой толщины слои их, что рассмотренные в пропущенном свете они дадут одну силу света и окраски, то толщины этих слоев обратно пропорциональны содержанию в них красящего вещества. Всякое фотометрическое сравнение сводится к определению условий, при которых наступает равенство двух освещений, поэтому и в К., рассматривая свет, прошедший через слой нормальной жидкости, и свет, проходящий через слой исследуемой жидкости, мы меняем эти слои до тех пор, пока не получим равенства в силе пропущенного света. Так как поглощение окрашенными растворами лучей разного цвета (различной длины волны) растет неодинаково с увеличением содержания красящего вещества, то лишь при равенстве в силе пропущенного света наступит и равенство окраски; при невыполнении первого условия, цвета растворов будут слегка другие. Довести два слоя раствора до равенства поглощения света можно: 1) добавляя при постоянной толщине слоя в один из них бесцветного растворителя до тех пор, пока сила пропущенного света и окраска его не будут одинаковы; по количеству прибавленного растворителя можно легко рассчитать отношение концентрации исследуемого раствора и нормального; 2) удлиняя более слабо окрашенный слой жидкости до тех пор, пока поглощение света двумя слоями раствора не будет одинаково; тогда обратное отношение высот слоев жидкости даст отношение их концентрации.



По первому методу, теоретически более совершенному, был устроен один из первых колориметров, а именно колориметр Гутон-Лабильярдьера, построенный Саллероном. Он представлял зачерненный внутри деревянный ящик, в одной из боковых стенок которого прорезаны были две щели, освещенные извне светом, отраженным от зеркала. За щелями стоят две одинаковой толщины кюветки с плоскими стеклянными стенками; в одной из них находится нормальная жидкость определенной концентрации, в другой исследуемый раствор. В противоположной стенке прорезаны отверстия для глаз наблюдателя, в поле зрения которого видны две окрашенные щели. Прибавляя в более крепкий раствор бесцветного растворителя из градуированной бюретки, наблюдатель стремится достигнуть равенства освещений и окраски щелей; по количеству прибавленного растворителя рассчитывается концентрация раствора. Неудобство этого прибора заключается в самом методе, причина же малой точности даваемых им результатов лежит в его конструкции; действительно, глаз способен легко сравнивать освещение и окраску лишь двух соприкасающихся полей, по мере же удаления их друг от друга трудность сравнения увеличивается. Удобнее колориметры, основанные на 2-м методе, например колориметр Вольфа, один из первых, построенных по этому типу. Он состоит из 2-х стеклянных трубок A и B, деленных на мм, закрытых снизу пришлифованными пластинками и снабженных кранами (фиг. 1).

Фиг. 1.

Свет, идущий от зеркала C, проходит через трубки и, дважды отразившись в стеклянных призмах D, выходит двумя смежными пучками из верхней общей плоскости призм. Наблюдатель смотрит через направленную на эту плоскость лупу и видит поле зрения, разделенное линией — гранью касания двух призм — на две части; одна половина освещена светом, прошедшим через A, другая через B. В A, положим, наливают до некоторой высоты нормальный раствор, B наполняют исследуемым раствором и выпускают из A и B, посредством кранов, жидкости до тех пор, пока обе половины поля не окажутся одинаковыми и линия раздела не исчезнет. Тогда обратное отношение высот столбов жидкостей в A и B даст отношение их концентраций; для облегчения вычисления высоту столба менее концентрированной жидкости берут равным 100 мм.

 

Колориметрический метод в промышленности

 

 

Колориметрический метод используют для количественного анализа продуктов. По интенсивности естественной окраски или окраски, полученной в результате обработки продуктов специфическими реактивами, можно точно определить, например, содержание аммиака, нитритов и нитратов в мясных продуктах, альдегидов, сивушных масел и фурфурола в спирте, меди и свинца в консервах, железа, некоторых витаминов, величины рН в продуктах, цветность сахара и пищевых жиров и т. д. Анализ сводится к определению концентрации вещества в растворе, поэтому из продуктов, имеющих не жидкую консистенцию, приготовляют растворы или экстракты. По технике выполнения колориметрический метод делится на субъективный (визуальный) и объективный. В первом случае сравнение окраски исследуемого раствора со стандартным раствором или стандартными окрашенными стеклами производится в колориметре с помощью органов зрения и зависит от чувствительности глаз исследователя. Во втором случае используют фотоэлектрические колориметры, где глаз человека заменен фотоэлементом, в котором световой луч возбуждает электрический ток (сила тока пропорциональна интенсивности светового потока), или изменяется сопротивление при прохождении электрического тока. Для исследования твердых, сыпучих, пастообразных и жидких продуктов широко используются фотометры, в которых действие фотоэлемента основано на измерении отраженного и проходящего светового потока.

 


Дата добавления: 2015-10-21; просмотров: 31 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
14 лучших креативных методик | Форма учета посещаемости студентов производственной практики

mybiblioteka.su - 2015-2024 год. (0.006 сек.)