Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Федеральное агенство по образованию



ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

__________________________________________________________________

 

Государственное образовательное учреждение профессионального высшего образования «МАТИ» - Российский государственный технологический университет им. К.Э. Циолковского

__________________________________________________________________

 

Кафедра «Наукоёмкие технологии радиоэлектроники»

 

МИКРОСТРУКТУРА МЕДНЫХ СПЛАВОВ.

 

Методические указания к лабораторной работе по курсу

«Материаловедение и материалы электронных средств»

 

 

Составитель: к.т.н., доц. Глаголева Н.Н.
к.т.н., доц. Кузькин В.И.

 

 

Москва 2009

 

 

Аннотация

В указаниях рассматриваются микроструктуры латуней, оловянной бронзы, их связь соответствующими диаграммами состояния и свойствами медных сплавов.

Для студентов кафедры «Наукоёмкие технологии радиоэлектроники», обучающихся по дисциплине «Материаловедение и материалы электронных средств».

 

 

Листов – 12, рисунков – 2.

 

СОДЕРЖАНИЕ

 

Введение

1. Цель работы 5

2. Краткие теоретические сведения 5

3. Порядок выполнения работы 11

4. Содержание отчёта по работе 11

5. Контрольные вопросы 12

6. Литература 12

 

Введение.

Медь и сплавы на её основе находят широкое применения в радиоэлектронике в качестве проводящих и конструкционных материалов.

Малое удельное сопротивление меди и хорошая коррозионная стойкость во многих агрессивных средах (запылённая атмосфера, морская вода и т.п.) способствуют использованию меди для коммутации функциональных элементов интегральных схем, волноводов, резонаторов, анодов мощных генераторных ламп и т.п.

Сплавы на основе меди, сохраняя её положительные качества (Высокие тепло и электропроводность, коррозионную стойкость и др.), обладают хорошими механическими и технологическими свойствами. Поскольку свойства медных сплавов зависят не только от их состава но и от их структуры. В работе рассматриваются возможные варианты микроструктур латуней и бронз, их связь с соответствующими диаграммами состояния и свойствами медных сплавов.

 

 

1.Цель работы.

1. Практическое рассмотрение микроструктуры основных промышленных сплавов на основе меди (латуней и бронз).

2. Анализ связи между микроструктурой сплавов и диаграммами состояния соответствующих систем.

 

2. Краткие теоретические сведения.

В качестве легирующих добавок к меди при создании медных сплавов используются элементы, образующие твёрдые растворы с медью (цинк, олово, алюминий, бериллий, кремний, марганец никель). Повышая прочность медных сплавов, легирующие компоненты практически не снижают, а некоторые из них до определённых концентраций увеличивают пластичность. Так относительное удлинение некоторых сплавов на основе меди доходит до 65%.



По технологическим свойствам сплавы на основе меди подразделяют на деформируемые и литейные, по способности упрочняться с помощью термической обработки – на упрочняемые и не упрочняемы термической обработкой. Но наиболее распространена классификация по химическому составу, в соответствии с которой сплавы на основе меди можно подразделить на две группы: латуни и бронзы.

Латунями называются сплавы меди с цинком и другими элементами. Они бывают двухкомпонентными (простые) и многокомпонентными (специальные). Простые латуни маркируются буквой «Л» и цифрой, показывающей среднее содержание меди в процентах. Латуни с содержанием меди более 90% называются томпаками (например, Л96), при 80-90% меди – полутомпаками (например, Л80 и Л90). В марках специальных латуней даются буквы, являющиеся начальными буквами названия легирующих компонентов. Содержание этих компонентов обозначается соответствующими цифрами после цифр, показывающих концентрацию меди в сплаве. Например, сплав ЛАЖ 60-1-1 содержит 60% меди, 1% AL и 1 % Fe, остальную часть (38 %) составляет цинк.

Бронзами называются сплавы на основе меди с добавками олова, алюминия, свинца, кремния или бериллия. Название бронзам дают по основным легирующим элементам – оловянные (медь - олово), алюминиевые (медь - алюминий), бериллиевые (медь - бериллиевые), кремниевые (медь - кремний) и др. Бронзы маркируются по следующему принципу: на первом месте ставятся буквы «БР.», а затем буквы, показывающие какие компоненты, помимо меди входят в состав сплава. После букв идут цифры, показывающие количество соответствующих компонентов в сплаве. Например, марка Бр. ОФ 10-1 означает, что в составе бронзы имеется 10% олова, 1% фосфора и остальное медь (89%).

 

 

Сплавы меди с никелем известны под различными названиями - нейзильбер (медь – никель - цинк), мельхиор (медь - никель), куниали (медь – никель - алюминий), Константин (медь – никель - марганец) и т.п. Такие сплавы хорошо сопротивляются атмосферной коррозии и очень широко используются в приборостроении.

 

Латуни.

Согласно диаграмме состояния системы медь – цинк (рис.2.1,а) цинк в значительных концентрациях растворяется в меди (предельная растворимость 39 %). При 1175 К (902 С) между жидкостью и альфатвёрдым раствором на основе меди (гранецентрированная кубическая решётка (ГЦК)) проходит перетектическая реакция с образованием более богатой цинком фазы (β - твёрдого раствора) на основе электронного соединения CuZn (объёмноцентрированная кубическая решётка (ОЦК)). При температурах выше 496С образующаяся β - фаза представляет собой неупорядоченный твёрдый раствор с хаотическим расположением атомов меди и цинка в узлах решётки ОЦК. При температурах 727-741 К (штриховая линия на диаграмме состояния) происходит упорядочивание (образование β - фазы, при котором атомы меди располагаются в узлах решётки ОЦК, а цинка в центре решётки ОЦК) и которое сопровождается значительным повышением твёрдости и хрупкости.

В соответствии с изменением кристаллической структуры материала изменяются и механические свойства латуней (рис.2.1.б). Когда латунь имеет структуру α - твёрдого раствора, увеличение содержания цинка вызывает повышение её прочности и пластичности. Появление β - фазы сопровождается резким снижением пластичности., но прочность продолжает возрастать при увеличении концентрации цинка, когда латунь находится в двухфазном состоянии. Переход латуни в однофазное состояние со структурой β - фазы (содержание цинка более 45%) вызывает резкое снижение прочности, поэтому на практике нашли применение латуни с содержанием цинка до 43 %.

Таким образом, по структуре можно выделить две группы латуней – однофазные (с структурой α - твёрдого раствора) и двухфазные (с α +β структурой). Вследствие хорошей пластичности однофазные латуни (α - латуни) используются для изготовления деталей пластической деформации при температуре выше 500 С. Для улучшения обработки материала резанием в состав латуни вводят небольшие количества свинца (так получаются марки латуней ЛС59-1, ЛС63-3).

Латуни имеют хорошую коррозийную стойкость, которая дополнительно повышается при добавлении небольшого количества олова (ЛО 70-1, так называемая «морская латунь»).

 

 

Из двухфазных α +β латуней можно изготавливать детали также методом литья. Наилучшей жидко текучестью (способностью расплава заполнять объем) обладает литейная латунь марки ЛК80-3Л.

Небольшие добавки кремния в этом случае позволяют получить отливки (арматура и детали приборов в машиностроении) сложной конфигурации.

Свойствами латуней определяются также и способом их обработки, поскольку микроструктура литой латуни имеет дендритное (древовидное) строение твердого раствора, а после пластической деформации и отжига –состоит из сравнительно одинаковых по форме зёрен (полиэдров). Различие в микроструктуре приводит к более высокой пластичности латуней после деформации и отжига.

Поскольку латуни обладают достаточно высоким относительным удлинением при повышенном пределе прочности по сравнению с чистой медью, это обеспечивает им технологические преимущества при обработке давлением (штамповкой, вытяжкой и т.п.). Поэтому латунь применяют для изготовления различных токопроводящих деталей, изготовленных путём обработки давлением.

 

Бронзы.

 

Сплавы меди с оловом, ещё в древности получившие название «бронз»,теперь называют оловянными бронзами, чтобы отличить их от новых сплавов меди с другими металлами (кроме цинка). Ввиду дороговизны и дефицитности олова ведутся исследования по замене и снижению его содержания в медных сплавах. Однако благодаря удачному сочетанию свойства оловянные бронзы по-прежнему используются в технике, хотя производство изделий из этих бронз почти не растёт. Диаграмма состояния системы медь – олово показана на рис.2.2.

 

 

Из – за большого интервала кристаллизации и значительного изменения состава образующих кристаллов α - твёрдого раствора последние приобретают вид дендритов с сильно выраженной ликвидацией. Область α -твёрдого раствора на основе меди, распространяющаяся до 15-16% олова при 773-1073° К (500-800° С), резко сокращается при понижении температуры. Однако это действительно лишь для равновесных условий. Практически же из-за незавершённости диффузионных процессов кристаллизация сплавов проходит неравновестно, так что включения промежуточных фаз появляются в структуре после кристаллизации при 6-7% олова. Эта граничная концентрация сохраняется неизменной и при дальнейшем понижении температуры до комнатной. Неравновесное состояние в этой части диаграммы показано штриховыми линиями.

В сплавах, содержащих более 12-14% олова, при 1071° К (798° С) проходит перитектическая реакция с образованием β-фазы (твердого раствора на основе электронного соединения состава Cu3 Sn), которое затем при 588°С испытывает электродный распад (β→L + γ). В свою очередь γ -фаза также распадается при 793° К (520°С) по эфтектоидной реакции γ-L+δ. Фаза δ также должна при 623° К (350°С) распадаться по эфтектоидной реакции (δ→α+ε), однако при обычно реализуемых условиях осаждения (20-500 град/мин) эта реакция не проходит. Поэтому в литом состоянии сплавы меди с 8-22% олова оказываются двухфазными, состоящими из ()-твёрдого раствора и

δ -фазы (электронное соединение состава Cu31Sn8). Появление δ - фазы вызывает резкое снижение пластичности (рис.2.2.б), поэтому, несмотря на увеличение прочности при возрастании концентрации олова до 25%, практическое значение имеют бронзы, содержащие до 14% олова.

По технологическим свойствам оловянные бронзы подразделяют на обрабатываемые давлением (до 6% олова) и литейные (свыше 6% олова).

В целях снижения стоимости литейных оловянных бронз в ряде случаев в них вводят добавки цинка (2 – 15%), а для лучшей обрабатываемости добавляют свинец (3 – 5%). Деформируемые оловянные бронзы наряду с хорошей электропроводностью и коррозионной стойкостью обладают высокими упругими свойствами, в связи с чем их используют для изготовления токопроводящих пружинящих деталей. Ещё более широкое применение для изготовления таких деталей находят сплавы меди с алюминием, кремнием, бериллием (так называемые безоловянистые или специальные бронзы). Эти бронзы обладают лучшими механическими свойствами по сравнению с оловянными, а кроме того, некоторые из них и специальными свойствами: химической стойкостью, жидко текучестью и т.п.

Аллюминевые бронзы отличаются хорошим механическим свойствами и высокой коррозионной стойкостью. Общим недостатком таких сплавом является плохая паяемости из-за трудности смягчивания припоями повестности сплава, содержащего в пленке окись алюминия.

 

 

Среди кремневых бронз находят применение как простые (с содержанием кремния 2-3%), так и сложные, например, Бр.КЦ 4-4 (легированные цинком) или Бр.КМП 3-1(легированные марганцем). Кремневые бронзы используют вместо дорогих оловянных и бериллевых бронз при изготовлении пружин, мембран и других подобных деталей, от которых требуется упругость.

Бериллиевые бронзы отличаются чрезвычайно высокими пределами упругости и прочности, твёрдостью и коррозионной стойкостью в сочетании с повышенным сопротивлением механическим нагрузкам и износу. Двойные бериллиевые бронзы содержат в среднем 2% бериллия (Бр.Б2). По диаграмме состояния системы медь-бериллий они имеют структуру, состоящую из ()-твёрдого раствора бериллия в меди и γ -фазы (электронного соединения CuBe). Предельная концентрация бериллия в α -твёрдом растворе значительно уменьшается с понижением температуры (от 2,75% при 870° С до 0,2% при 300° С). Это даёт возможность подвергать бериллиевые бронзы упрочняющей термической обработке: закалке и искусственному старению. Бериллиевые бронзы используют для изготовления пружинящих деталей особо ответственного назначения. Отличительной особенностью бериллиевой бронзы является отсутствие искрения при ударах. Однако бериллий очень токсичен, поэтому изготовление материалов и деталей с его участием требует специальных мер безопасности.

 

Порядок выполнения работы.

 

1.Ознакомиться с диаграммами состояния систем медь-олово, медь-цинк.

2.Рассмотреть с помощью микроскопа структуру предложенных образцов:

а) схематически изобразить микроструктуры, просмотренные в микроскопе;

б) перечислить обнаруженные структурные составляющие, описать форму их выделения (зернистая, игольчатая, по границам зерен и т.п.).

3. Сопоставить рассмотренные микроструктуры с ожидаемыми по диаграмме состояния. Дать объяснение случаям несоответствия между ними.

 

 

Содержание отчёта по работе.

 

Отчёт должен содержать:

а) диаграммы состояния Cu-Sn и Cu-Zn.

б) схемы микроструктур образцов бронз и латуней с указанием структурных

составляющих.

 

 


Дата добавления: 2015-09-29; просмотров: 31 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
В настоящее время все большее внимание уделяется не только теоретическому анализу конфликтов, но и психотехнике коммуникативного поведения, существенно снижающей уровень конфликтности в процессе | Механізм формування пропозиції грошей

mybiblioteka.su - 2015-2024 год. (0.013 сек.)