Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1 ВОПРОС Общие сведения о строительных материалах и их основные свойства. Общие сведения о строительных материалах. В процессе строительства, эксплуатации и ремонта зданий и сооружений строительные




1 ВОПРОС
Общие сведения о строительных материалах и их основные свойства.
Общие сведения о строительных материалах.
В процессе строительства, эксплуатации и ремонта зданий и сооружений строительные изделия и конструкции из которых они возводятся подвергаются различным физико-механическим, физическим и технологическим воздействиям. От инженера-гидротехника требуется со знанием дела правильно выбрать материал, изделия или конструкцию которая обладает достаточной стойкостью, надёжностью и долговечностью для конкретных условий.
Строительные материалы и изделия, применяемые при строительстве, реконструкции и ремонте различных зданий и сооружений, делятся на природные и искусственные, которые в свою очередь подразделяются на две основные категории: к первой категории относят: кирпич, бетон, цемент, лесоматериалы и др. Их применяют при возведении различных элементов зданий (стен, перекрытий, покрытий, полов). Ко второй категории - специального назначения: гидроизоляционные, теплоизоляционные, акустические и др.
Основными видами строительных материалов и изделий являются: каменные природные строительные материалы из них; вяжущие материалы неорганические и органические; лесные материалы и изделия из них; металлические изделия. В зависимости от назначения, условий строительства и эксплуатации зданий и сооружений подбираются соответствующие строительные материалы, которые обладают определёнными качествами и защитными свойствами от воздействия на них различной внешней среды. Учитывая эти особенности, любой строительный материал должен обладать определёнными строительно-техническими свойствами. Например, материал для наружных стен зданий должен обладать наименьшей теплопроводностью при достаточной прочности, чтобы защищать помещение от наружного холода; материал сооружения гидромелиоративного назначения – водонепроницаемостью и стойкостью к попеременному увлажнению и высыханию; материал для покрытия дорого (асфальт, бетон) должен иметь достаточную прочность и малую истираемость, чтобы выдержать нагрузки от транспорта.
Классифицируя материалы и изделия, необходимо помнить, что они должны обладать хорошими свойствами и качествами.
Свойство – характеристика материала, проявляющаяся в процессе его обработки, применении или эксплуатации.
Качество – совокупность свойств материала, обуславливающих его способность удовлетворять определённым требованиям в соответствии с его назначением.
Свойства строительных материалов и изделий классифицируют на три основные группы: физические, механические, химические, технологические и др.
К химическим относят способность материалов сопротивляться действию химически агрессивной среды, вызывающие в них обменные реакции приводящие к разрушению материалов, изменению своих первоначальных свойств: растворимость, коррозионная стойкость, стойкость против гниения, твердение.
Физические свойства: средняя, насыпная, истинная и относительная плотность; пористость, влажность, влагоотдача, теплопроводность.
Механические свойства: пределы прочности при сжатии, растяжении, изгибе, сдвиге, упругость, пластичность, жёсткость, твёрдость.
Технологические свойства: удобоукладываемость, теплоустойчивость, плавление, скорость затвердевания и высыхания.



5 – 7 ВОПРОСЫ
Физические свойства
Эти свойства характеризуют его строение или отношение к физическим процессам окружающей среды. К ним относят массу, истинную и среднюю плотность, пористость, водопоглощение и водоотдачу, влажность, гигроскопичность, водопроницаемость, морозостойкость, воздухо-, газо- и паропроницаемость, теплопроводность и теплоемкость, огнестойкость и огнеупорность.
Истинная плотность - отношение массы к объему материала в абсолютно плотном состоянии, т.е. без пор и пустот. Чтобы определить истинную плотность r (кг/м3, г/см3), необходимо массу материала (образца) m (кг, г) разделить на абсолютный объем V (м 3, см3), занимаемый самим материалом (без пор):
Зачастую истинную плотность материала относят к истинной плотности воды при 4о С, которая равна 1г/см3, тогда определяемая истинная плотность становится как бы безразмерной величиной.
Лишь у плотных материалов (стали, стекла, битума и некоторых других) истинная и средняя плотности равны, т.к. объем внутренних пор у них весьма мал.
Средняя плотность - это физическая величина, определяемая отношением массы образца материала ко всему, занимаемому им объему, включая имеющиеся в нем поры и пустоты. Среднюю плотность r (кг/м3, г/см3) вычисляют по формуле:
r = m / V,
где m - масса материала в естественном состоянии; V - объем материала в естественном состоянии.
Средняя плотность не является величиной постоянной - она изменяется в зависимости от пористости материала. Например, искусственные материалы можно получит с различной пористостью (тяжелый бетон имеет плотность до 2900 кг/м3, а легкий - до 1800 кг/м3). На плотность оказывает влияние влажность материала.
Для сыпучих материалов важной характеристикой является насыпная плотность - сюда включается не только пористость самого материала, но и пустоты между зернами или кусками материала.
Пористость материала - это степень заполнения его порами. Пористость дополняет плотность до 1 или до 100%. Пористость различных материалов:
стекло, металл 0%;
тяжелый бетон 5 - 10%;
кирпич 25 - 35%;
газобетон 55 - 85%;
пенопласт 95%,
т.е. она колеблется в значительных пределах.
На свойства материала оказывают влияние также величина пор и их характер (мелкие или крупные, замкнутые или сообщающиеся).
Плотность и пористость прямо влияют на такие характеристики материалов как водопоглощение, водопроницаемость, морозостойкость, прочность, теплопроводность и др.
Водопоглощение - способность материала впитывать воду и удерживать ее. Величина водопоглощения определяется разностью массы образца в насыщенном водой и в абсолютно сухом состоянии. Различают объемное водопоглощение, когда разность относят к объему образца и массовое водопоглощение - при отнесении разности к массе сухого образца. Массовое водопоглощение для некоторых материалов:
гранит 0,5 - 0,8%
тяжелый бетон 2 - 3%
керамический кирпич 8 - 20%
пористые теплоизоляционные материалы, например, торфоплиты >100%.
Насыщение материалов водой отрицательно влияет на их основные свойства: увеличивает плотность и теплопроводность, снижает прочность.
Влажность - содержание влаги, отнесенное к массе материала в сухом состоянии. Влажность материала зависит как от свойств впитывать влагу самого материала, так и от среды, в которой находится материал.
Гигроскопичность - свойство материалов поглощать определенное количество воды при повышении влажности окружающего воздуха. Это свойство характерно, например, для древесины - чтобы избежать этого, применяют защитные покрытия.
Водопроницаемость - свойство материала пропускать воду под давлением. Характеризуется количеством воды, прошедшей в 1 час через 1 см2 площади испытуемого материала при постоянном давлении. Водонепроницаемыми являются особо плотные материалы (сталь, стекло, битум) и плотные материалы с замкнутыми порами (например, бетон специально подобранного состава).
Морозостойкость - свойство насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности.
Вода, замерзая, увеличивается в объеме на 9%, при этом, если она заполнила полностью поры - лед разрушит стенки пор, но обычно поры заполняются не полностью, поэтому разрушение может произойти при многократном замораживании и размораживании.
Плотные материалы, не имеющие пор, или материалы с незначительной открытой пористостью, водопоглощение которых не превышает 0,5%, обладают высокой морозостойкостью. Морозостойкость имеет большое значение для стеновых, фундаментных и кровельных материалов, систематически подвергающихся попеременному замораживанию и оттаиванию.
Материалы на морозостойкость испытывают в морозильных камерах. Насыщенные водой образцы охлаждают до температуры - 15-170С и, после чего, их оттаивают при температуре +200 С. Материал считается морозостойким если после заданного числа циклов потеря в массе образцов в результате выкрашивания и расслоения не превышает 5%, а прочность снижается не более чем на 25%. По числу выдерживаемых циклов замораживания и оттаивания (степени морозостойкости) материалы подразделяют на марки Ммрз 10, 15,25, 35, 50, 100, 150, 200 и более.
Если образцы в процессе испытаний не имеют следов разрушения, то степень морозостойкости устанавливается определением коэффициента морозостойкости:
Кмрз = Rмрз / Rнас,
где Rмрз - предел прочности при сжатии материала после испытания на морозостойкость, МПа; Rнас - предел прочности при сжатии насыщенного водой материала, МПа. Для морозостойких материалов Кмрз должен быть не менее 0,75.
Паро- и газопроницаемость - свойство материала пропускать через свою толщу под давлением водяной пар или газы, в том числе воздух. Все пористые материалы при наличии незамкнутых пор способны пропускать пар или газ.
Паро- и газопроницаемость характеризуется коэффициентом, который определяется количеством пара или газа в литрах, проходящего через слой материала толщиной 1м и площадью в 1 м2 в течение одного часа при разности парциальных давлений на противоположных стенках 133,3 Па.
Теплопроводность - свойство материала передавать через толщу теплоту при наличии разности температур на поверхностях, ограничивающих материал. теплопроводность материала оценивается количеством теплоты, проходящей через стену из испытываемого материала толщиной 1 м, площадью 1 м2 за 1 час при разности температур противоположных поверхностей стены 10С. Теплопроводность измеряется в Вт/(м·К).
Теплопроводность материала зависит от многих факторов: природы материала, его строения, пористости, влажности, от средней температуры, при которой происходит передача теплоты. Материал кристаллического строения обычно более теплопроводен, чем материал аморфного строения. Если материал имеет слоистое или волокнистое строение, то теплопроводность его зависти от направления потока теплоты по отношению к волокнам, например, теплопроводность древесины вдоль волокон в два раза больше, чем поперек волокон.
Мелкопористые материалы менее теплопроводны, чем крупнопористые, даже если их пористость одинакова. Материалы с замкнутыми порами имеют меньшую теплопроводность, чем материалы с сообщающимися порами.
Теплопроводность однородного материала зависит от величины его средней плотности. Так, с уменьшением плотности материала теплопроводность уменьшается и наоборот.
На теплопроводность материала значительное влияние оказывает его влажность: влажные материалы более теплопроводны, чем сухие, так как теплопроводность воды в 25 раз больше теплопроводности воздуха.
При повышении температуры теплопроводность увеличивается.
Огнестойкость - способность материала противостоять действию высоких температур и воды в условиях пожара. По степени огнестойкости материалы делят на: несгораемые, трудносгораемые и сгораемые.
Несгораемые материалы под действием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются (сталь, бетон, кирпич).
Трудносгораемые материалы под действием огня с трудом воспламеняются, тлеют или обугливаются, но после удаления источника огня их горение и тление прекращаются (древесно-цементный материал фибролит, асфальтовый бетон, некоторые виды полимерных материалов).
Сгораемые материалы под воздействием огня или высокой температуры воспламеняются и продолжают гореть после удаления источника огня (дерево, войлок, толь, рубероид).
Огнеупорность - свойство материала выдерживать длительное воздействие высокой температуры, не расплавляясь и не деформируясь. По степени огнеупорности материалы делят на огнеупорные (длительное время выдерживают температуру свыше 15800С), тугоплавкие (1350 – 15800С) и легкоплавкие, размягчающиеся при температуре ниже 13500С (к ним относят и обыкновенный глиняный кирпич).

Механические свойства
Они характеризуют способность материала сопротивляться разрушающему или деформирующему воздействию внешних сил.
Прочность - свойство материала сопротивляться разрушению под действием внутренних напряжений, возникающих от внешних нагрузок. Прочность является основным свойством большинства материалов, используемых в горной промышленности, от ее значения зависит величина нагрузки, которую может воспринять данный элемент при заданном сечении.
Материалы, в зависимости от происхождения и структуры, по- разному противостоят различным напряжениям. Материалы минерального происхождения (природные камни, кирпич, бетон и др.) хорошо сопротивляются сжатию, значительно хуже срезу и еще хуже растяжению. Другие материалы (металл, древесина) хорошо работают на сжатие, изгиб и растяжение, поэтому их используют значительно чаще в конструкциях, работающих на изгиб.
Прочность материала характеризуется пределом прочности (при сжатии, изгибе и растяжении). Предел прочности - напряжение, соответствующее нагрузке, при которой происходит разрушение образца материала. Предел прочности при сжатии и растяжении Rраст, МПа, вычисляют по формуле
Rсж(Rраст) = P/F,
где P - разрушающая нагрузка, Н; F - площадь поперечного сечения образца, мм2.
Предел прочности при изгибе Rизг:
при одном сосредоточенном грузе и образце-балке прямоугольного сечения
Rизг = 3Pl / 2bh2;
при двух равных грузах, расположенных симметрично оси балки
Rизг = P(l - a) / bh2,
где l - пролет между опорами, мм; а - расстояние между грузами, мм; b и h - ширина и высота поперечного сечения балки, мм.
Предел прочности материала определяют опытным путем, испытывая в лаборатории на гидравлических прессах или разрывных машинах специально изготовленные образцы. Для испытания материалов на сжатие образцы изготавливают в виде куба или цилиндра, на растяжение - в виде круглых стержней или полос, а на изгиб - в виде балок. Форма и размеры образцов должны строго соответствовать требованиям ГОСТа или технических условий на каждый вид материала.
Прочность материалов, применяемых в строительной промышленности, обычно характеризуют маркой, которая соответствует по величине пределу прочности при сжатии, полученному при испытании образцов заданной формы и размеров. Например, для каменных материалов установлены следующие марки: 4, 7, 10, 15, 25, 35, 50, 75, 100, 125, 150, 200, 300, 400, 500, 600, 800, 1000. Материалы с пределом прочности при сжатии, например, от 20 до 29,9МПа относят к марке 200.
Упругость - свойство материала деформироваться под нагрузкой и принимать после снятия нагрузки первоначальную форму и размеры. Наибольшее напряжение, при котором материал ее обладает упругостью, называется пределом упругости. Упругость является в подавляющем большинстве случаев положительным свойством материалов.
Пластичность - способность материала изменять под действием нагрузки форму и размеры без образования разрывов и трещин и сохранять изменившиеся форму и размеры после удаления нагрузки. Это свойство противоположно упругости.
Хрупкость - свойство материала мгновенно разрушаться под действием внешних сил без предварительной деформации. Хрупкими являются природные камни, керамические материалы, стекло, чугун, бетон и др.
Сопротивление удару - свойство материала сопротивляться разрушению под действием ударных нагрузок. Этого вида нагрузки возникают, например, в бункерах. Хрупкие материалы обычно плохо сопротивляются ударным нагрузкам.
Твердость - свойство материала сопротивляться проникновению в него другого материала, более твердого. Твердость материала влияет на трудоемкость его обработки.
Существует несколько способов определения твердости материалов. Твердость древесины, бетона, стали определяют, вдавливая в образцы стальной шарик (метод определения твердости по Бринелю), алмазную пирамиду (по Виккерсу) или то и другое (по Роквеллу). О величине твердости судят по глубине вдавливания шарика, диаметру полученного отпечатка или по величине отношения нагрузки к площади поверхности полученного сферического отпечатка.
Твердость природных каменных материалов определяют по шкале твердости (метод Мооса), в которой десять специально подобранных минералов расположены в такой последовательности, когда следующий по порядку минерал оставляет черту (царапину), на предыдущем, а сам им не прочерчивается:
Например, если испытуемый материал чертится апатитом, а сам оставляет черту (царапину) на плавиковом шпате, то его твердость составляет 4,5.
Истираемость - свойство материала изменяться в объеме и массе под воздействием истирающих усилий. От истираемости зависит возможность применения материала для устройства настилов, футеровки бункеров, исполнительных органов погрузочных машин. Истираемость материалов определяют в лабораториях на специальных машинах - кругах истирания.
Износом называют разрушение материала при совместном действии истирания и удара. Подобное воздействие на материал происходит при эксплуатации бункеров. На износ материалы испытывают в специальных вращающихся барабанах.
8 ВОПРОС
Химические свойства
Химические свойства характеризуют способность материала к химическим превращениям под воздействием веществ, с которыми он находится в соприкосновении. Химические свойства материалов весьма разнообразны, основные из них - химическая и коррозионная стойкость.
Химическая стойкость - способность материалов противостоять разрушающему влиянию щелочей, кислот, растворенных в воде солей и газов.
Коррозионная стойкость - свойство материалов сопротивляться коррозионному воздействию среды.
Многие материалы, применяемые в строительной промышленности, не обладают этими свойствами. Так, почти все цементы плохо сопротивляются действию кислот, древесина не стойка к воздействию как кислот, так и щелочей, практически все изделия из металлов подвержены в той или иной степени воздействию коррозии. Лучше сопротивляются воздействию кислот и щелочей материалы из пластмасс или стекловолокна.

9 ВОПРОС
Горные породы и их классификация
Природными каменными материалами называют строительные материалы, получаемые из горных пород за счет применения лишь механической обработки (дробления, раскалывания, распиливания, шлифования, полирования и др.). В результате такой обработки природные каменные материалы почти полностью сохраняют физико-механические свойства горной породы, из которой они были получены.
Горные породы представляют собой природные агрегаты минералов более или менее постоянного состава, образующие самостоятельные геологические тела, слагающие земную кору. Горные породы, состоящие из одного минерала, называют простыми, или мономинеральными, а породы из нескольких минералов называют сложными, или полиминеральными. Минерал (от латинского mineга - руда) - природное тело, приблизительно однородное по химическому составу и физическим свойствам, образовавшееся в результате различных физико-химических процессов, происходящих в земной коре. Каждый минерал характеризуется определенными химическим составом и физико-механическими свойствами.
Природные каменные материалы начали применять несколько тысячелетий назад. Украина располагает богатыми запасами разнообразных природных каменных материалов.
Природные каменные материалы широко применяют в строительстве, они являются также основным сырьем для получения минеральных вяжущих веществ и искусственных каменных материалов.
По происхождению горные породы разделяют на три группы: магматические (изверженные), осадочные и метаморфические.
Магматические. Глубинные горные породы (граниты, сиениты, диориты и др.) образовались в результате медленного остывания магмы в толще земной коры под значительным давлением верхних слоев. В таких условиях горные породы приобрели равномерную кристаллическую структуру в результате того, что крупные зерна различных минералов прочно срослись между собой.
Излившиеся горные породы (базальты, андезиты, диабазы и др.) образовались при быстром остывании магмы на поверхности земли. В таких условиях не происходила полная кристаллизация остывающей магмы. В зависимости от условий образования излившиеся горные породы имеют мелкозернистое, скрытокристаллическое или аморфное строение. Если же из вязкой магмы медленно выделялись газообразные продукты, образовывались пористая или пемзообразная структуры. Кроме того, к изверженным горным породам относятся обломочные породы, которые образовались из мельчайших частиц раздробленной лавы, выброшенной на поверхность земли при извержении вулканов. Эти отложения остались в рыхлом состоянии (вулканический пепел, пемза) либо при наличии природных цементирующих веществ и под давлением вышележащих слоев превратились в плотные цементированные породы (вулканический туф).
Осадочные горные породы. По характеру образования и составу осадочные горные породы делят на: обломочные (механические отложения - брекчии, конгломераты, пески и др.), глинистые, хемогенные (доломит, магнезит) и органогенные (известняки, мел).
Метаморфические или видоизмененные горные породы. При их образовании происходила перекристаллизация минералов без их плавления, способствовавшая повышению плотности образовавшихся пород по сравнению с исходными. Как правило метаморфические горные породы имеют сланцевое строение, но могут сохранять структуру первичных пород.
Горные породы, применяемые в строительстве
Условия образования горных пород в значительной мере предопределяют характер их строения. В то же время от строения зависят основные свойства, следовательно, и область применения горных пород в строительстве.
Глубинные магматические горные породы характеризуются высокой плотностью, морозостойкостью и малым водопоглощением. Основные виды глубинных горных пород - гранит, диорит, габбро, лабрадорит.
Гранит - плотность в среднем 2700 кг/м3, пористость всего 0,5-1,5%, предел прочности при сжатии - 100 - 250 МПа. Гранит характеризуется высокой морозостойкостью и малым водопоглощением, большим сопротивлением выветриванию, хорошо обтесывается, шлифуется и полируется, однако отличается хрупкостью и невысокой огнестойкостью.
Гранит применяют для облицовки зданий и сооружений, из него изготовляют бортовые камни, ступени и другие изделия, а также щебень для высокопрочного бетона.
Габбро - темно-серая, черная или темно-зеленая с оттенками порода, плотностью 2800-3100 кг/м3, предел прочности при сжатии - 200-350 МПа. Габбро имеет высокие вязкость и стойкость против выветривания. Изделия из габбро применяют в дорожном строительстве.
Порфиры характеризуются порфировой структурой, т.е. наличием "вкрапленников" в основной мелкозернистой массе. Цвет порфиров изменяется от красно-бурого до серого с разнообразными оттенками, плотность - 2400- 2500 кг/м,3 предел прочности при сжатии - 120-180 МПа. Порфиры применяют в дорожном строительстве и для изготовления облицовочных плит. Месторождения порфиров имеются в Крыму.
Диабаз - цвет его темно-серый, часто с зеленоватым оттенком, плотность - 2800 - 3000 кг/м3, предел прочности при сжатии - 200 - 300 МПа. Диабаз отличается высокой твердостью, вязкостью и долговечностью. Он является хорошим материалом для устройства дорожных покрытий, получения щебня. Диабазы добываются в Украине.
Базальт по химическому составу так же, как и диабаз - аналог габбро, он имеет темно-серый цвет, высокие плотность и долговечность. Плотность базальта доходит до 3300 кг/м3, предел прочности при сжатии иногда достигает 400 МПа и более. Базальт с трудом поддается обработке, но хорошо полируется. Из него изготовляют разнообразные дорожные материалы. Добывают базальт в Украине, на Кавказе и Дальнем Востоке.
В качестве примера обломочных рыхлых магматических пород можно назвать вулканический пепел и пемзу, а цементированных пород - вулканический туф.
Вулканический пепел представляет собой порошкообразные частицы вулканической лавы, состоящие в основном из аморфного кремнезема. Частицы крупностью до 5 мм называют вулканическим песком. Вулканический пепел и песок применяют в качестве добавок к цементам.
Пемза - пористая порода светло-серого цвета, по внешнему виду похожая на застывшую пену. Плотность ее 400-600 кг/м3, предел прочности при сжатии - 2-4 МПа. Пемза залегает в виде частиц размером от 5 до 30 мм. Применяют ее как заполнитель для легких бетонов.
Вулканический пепел, пемза и другие пористые вулканические породы в Украине не встречаются.
Вулканический туф - пористая горная порода, состоящая из вулканического пепла, уплотненного и сцементированного. Туфы имеют разнообразную окраску: розовую, оранжевую, красную, коричневую и др. Они характеризуются значительной пористостью, малой плотностью и теплопроводностью, достаточной прочностью и долговечностью, хорошо обрабатываются. Эти качества туфов позволяют успешно применять их для облицовки стен зданий; отходы добычи и обработки туфов после дробления и фракционирования используют в качестве заполнителей легких бетонов. Залежи вулканических туфов имеется в Армении, Грузии и на Дальнем Востоке.
Обломочные осадочные горные породы как рыхлые (песок и гравий), так и сцементированные (песчаники, конгломераты, брекчии) находят широкое применение в строительстве.
Песок представляет собой рыхлую смесь зерен различных пород крупностью 0,14-5 мм. По составу песок может быть кварцевым, полевошпатовым, известняковым, пемзовым и др., а по происхождению - горным, овражным, речным, морским, дюнным и др. Используют песок в качестве заполнителя в растворах и бетонах.
Гравий - смесь окатанных обломков горных пород размером от 5 до 150мм служит заполнителем для бетона.
К глинистым осадочным горным породам относят тонкообломочные отложения, состоящие из мельчайших частиц каолинита, кварца, слюды, полевого шпата и др. Применяют их как сырье для керамической и цементной промышленности.
Песчаники - плотная горная порода, состоящая из зерен кварца, сцементированных различными природными растворами. В зависимости от вида связующего различают песчаники глинистые, известняковые и кремнистые. Физико-механические свойства песчаников зависят от вида цементирующего вещества, крупности и формы сцементированных зерен. Цвет песчаников желтый, серый и даже бурый. Наибольшими плотностью и прочностью обладают кремнистые песчаники, их плотность 2500-2600 кг/м3, предел прочности при сжатии - 150- 250 МПа, они отличаются также высокими твердостью и стойкостью к истиранию.
Из песчаников выполняют бутовые камни, плиты для устройства полов промышленных зданий и тротуаров, щебень для бетонов и другие изделия. Песчаник наряду с песком, гравием и глиной имеется во многих районах нашей страны.
К осадочным хемогенным породам относят доломит, магнезит, гипс, ангидрит.
Доломит - плотная горная порода. По внешнему виду и физико-механическим свойствам доломит очень похож на плотный известняк. Из него изготовляют облицовочные плиты щебень для бетона, огнеупоров и минеральных вяжущих веществ. Месторождения доломита имеются в Донецкой области.
Магнезит применяют для производства вяжущих веществ и огнеупорных материалов.
Гипсовый камень является плотной горной породой, состоящей в основном из минерала того же названия. Гипсовый камень является сырьем для производства строительного гипса и гипсовых вяжущих.
Из органогенных осадочных пород в строительстве используют плотный известняк, известняк-ракушечник, мел, трепел, диатомит.
Известняк является широко распространенной горной породой, состоящей в основном из минерала кальцита. Цвет известняка и многие его свойства зависят от наличия в нем примесей (глины, кремнезема, оксидов железа и др.). Так, чистый известняк имеет белый цвет, а глинистые примеси придают ему желтоватый оттенок. Порода, состоящая из примеси известняка и глины, называется мергелем. Известняки бывают плотными и пористыми.
Плотные известняки состоят из мелких сцементированных зерен кальцита. Плотность их колеблется от 1800 до 2600 кг/м3, предел прочности при сжатии до 180 МПа. Плотные известняки морозостойки, из них изготовляют плиты и камни для наружной облицовки стен, щебень для бетона, их используют также в качестве сырья для получения извести и портландцемента.
Известняк-ракушечник - пористая горная порода, состоящая из раковин и их обломков, сцементированных известняковым вяжущим. Ракушечники характеризуются большой пористостью, низкой прочностью и малой теплопроводностью; они хорошо поддаются распиловке. Известняк-ракушечник плотностью 800-1500 кг/м3 и прочностью при сжатии 1-3 МПа с успехом употребляют в виде камней и блоков правильной формы для кладки стен жилых зданий, а отходы ракушечника - в виде щебня, для легких бетонов.
Мел является слабосцементированной горной породой, состоящей из микроскопических раковин. Мел белого цвета, его используют в качестве белого пигмента для приготовления красок, замазок, а также при производстве извести и портландцемента.
Гнейсы по минералогическому составу сходны с гранитами, из которых они образовались, но отличаются от них сланцеватым строением. Окраска гнейсов светлая или пестрая. Физико-механические свойства их близки к свойствам гранитов. В строительстве гнейсы используют для тех же целей, что и граниты.
Глинистые сланцы получились из глин в результате сильного уплотнения и действия высоких температур. Цвет их серый или сине-черный. Глинистые сланцы не размокают в воде, легко раскалываются на пластинки толщиной 4-10 мм. Такие пластинки из плотных глинистых сланцев являются долговечным кровельным материалом (природный шифер).
Мрамор представляет собой зернисто-кристаллическую горную породу, образовавшуюся в результате перекристаллизации известняков и доломитов под воздействием высоких температур и давлений. Чистый мрамор имеет белый цвет, но в зависимости от примесей цвет его может быть розовым, красным, серым и даже черным. При неравномерном распределении примесей мраморы имеют пеструю окраску с различными узорами, придающими камню декоративность.
Мрамор характеризуется высокой плотностью и прочностью. Плотность его достигает 2800 кг/м3, водопоглощение не превышает 0,7 %, а предел прочности при сжатии колеблется от 100 до 300 МПа. Мрамор, в связи с его невысокой твердостью (3-4), можно сравнительно легко распиливать на тонкие плиты, шлифовать и полировать. Применяют его для внутренней облицовки стен, изготовления лестничных ступеней, подоконных досок и других изделий, которые, как правило, используют в общественных зданиях и сооружениях. Из отходов обработки мрамора - мраморной крошки изготовляют мозаичные бетонные изделия. Для наружной облицовки зданий мрамор не рекомендуется, так как под действием содержащихся в воздухе газов и влаги он быстро теряет свои декоративные качества.
Кварцит имеет цвет белый, красный и темно-вишневый. Кварцит характеризуется большой плотностью, хрупкостью и твердостью, а также высокой стойкостью к выветриванию. Плотность его 2500-2700 кг/м3 предел прочности при сжатии достигает 400 МПа. Применяют кварцит в виде тесаного камня и плит для наружной облицовки зданий и сооружений, а также в виде щебня для бетона. Большие залежи кварцита имеются в Карелии.
10 ВОПРОС
Свойства и виды природных каменных материалов и изделий
Свойства природных каменных материалов. Среди многообразия физико-механических свойств природных каменных материалов обычно выделяют плотность, предел прочности при сжатии, морозостойкость, по величине которых оценивают их качество и делят на марки.
По плотности в сухом состоянии каменные материалы разделяют на тяжелые (более 1800 кг/м3) и легкие (менее 1800 кг/м3).
По пределу прочности при сжатии установлены следующие марки: для тяжелых каменных материалов - от 10 до 100, а для легких - от 1 до 20.
По степени морозостойкости в циклах замораживания (Мрз) для каменных материалов установлены марки от 10 до 500.
По степени водостойкости (коэффициенту размягчения) материалы разделяют на группы с величиной данного показателя 0,6; 0,75; 0,9 и 1.
К каменным материалам, предназначенным для дорожных покрытий, полов промышленных зданий, предъявляют дополнительные требования (высокая стойкость к истиранию, износу и др.). Для природного камня, из которого изготовляют облицовочные плиты, большое значение имеют внешний вид, цвет и текстура.
Выбирают горные породы для тех или иных каменных материалов и изделий на основании результатов испытаний образцов, оценки внешнего вида, а также с учетом эксплуатационных условий.
Виды природных каменных материалов и изделий.
В строительстве используют различные виды природных каменных материалов и изделий: бутовый камень, стеновые камни и блоки, облицовочные камни и плиты, кровельные плитки и др.
Бутовый камень применяют в строительстве в виде кусков горной породы неправильной формы (рваный бут) или неправильных плит. Рваный бут получают из осадочных горных пород (известняков, доломитов, песчаников) взрывным способом, а плиты (постелистый бут и плитняк) добывают из слоистых горных пород при помощи клиньев, ударных механизмов и др. Масса отдельных бутовых камней колеблется в пределах 20-40 кг. Бутовый камень должен иметь предел прочности при сжатии не менее 10 МПа, а коэффициент размягчения не ниже 0,75. В нем не должно быть трещин, расслоений и рыхлых прослоек, снижающих его строительные свойства.
Бутовый камень служит материалом для кладки фундаментов, стен не отапливаемых зданий и сооружений, подпорных стенок и др. Отходы при заготовке бутового камня дробят и используют в виде щебня для бетонов.
Стеновые камни и блоки изготовляют из известняков, вулканических туфов и других горных пород плотностью до 2200 кг/м3. Размеры камней для ручной кладки 390х190х190 мм, размеры укрупненных блоков для механизированной кладки устанавливают исходя из прочности породы и грузоподъемности кранов. Правильную геометрическую форму и требуемые размеры камней и блоков получают, как правило, выпиливая их из массива при помощи камнерезных машин; значительно реже выпускают колотые штучные камни. Лицевая поверхность стеновых камней и блоков должна отвечать требованиям декоративности.
Горные породы, применяемые для изготовления стеновых камней и блоков, должны иметь предел прочности при сжатии не ниже 25 МПа, морозостойкость не ниже Мрз 15, коэффициент размягчения не ниже 0,6.
Камни и блоки из легких горных пород являются в ряде районов нашей страны местными материалами. Стены жилых и общественных зданий из легких природных камней и блоков значительно дешевле кирпичных и имеют красивый внешний вид.
Облицовочные камни и плиты изготовляют из блоков природного камня путем их распиливания или раскалывания с последующей механической обработкой. Горные породы для получения блоков-полуфабрикатов следует выбирать с учетом эксплуатационных условий, в которых будут находиться изготовленные из них облицовочные изделия. Так, горные породы, предназначенные для наружной облицовки, должны быть атмосферостойкими, без трещин и следов выветривания, иметь красивую и неизменную окраску. Для этой цели применяют: граниты, сиениты, диориты, габбро, лабрадориты, кварциты, плотные известняки, туфы, песчаники. Горные породы, используемые для внутренней облицовки, должны иметь красивую окраску и легко полироваться. Чаще всего для внутренней облицовки применяют мрамор.
Облицовочные камни и плиты бывают пилеными и тесаными. Пиленые изделия, как правило, дешевле и долговечнее тесаных, так как при распиловке горных пород удается получать сравнительно тонкие изделия без микротрещин, которые возникают при теске камня.
Плиты для облицовки стен и настилки полов должны иметь прямоугольную форму и заданные размеры. Кроме того, лицевой поверхности плит придают различную декоративную фактуру. В зависимости от способа выполнения фактуры делят на: ударные, получаемые скалыванием частиц камня (фактура "скалы", бугристая, бороздчатая, точечная, рифленая), и абразивные, получаемые путем истирания поверхности различными абразивами (пиленая, шлифованная, лощеная, зеркальная).
Плиты и камни из изверженных горных пород (граниты, лабрадориты, габбро и др.) применяют для наружных облицовок цоколей и фасадов монументальных зданий, долговечных и декоративных полов в помещениях общественных зданий с интенсивными людскими потоками, например, на станциях метрополитена, вокзалах и в универмагах, а также для облицовки набережных, гидротехнических сооружений и др. В последние годы внутреннюю облицовку монументальных зданий довольно часто выполняют из экономичных малоразмерных мраморных плиток толщиной 8-12 мм, лицевая поверхность которых имеет зеркальную фактуру.
При производстве мраморных плит получают большое количество отходов в виде обрезков, которые используют для устройства мозаичных полов.
Из природного камня, кроме облицовочных плит, изготовляют профильные детали, например плинтусы, угловые детали и детали граненых и каннелированных облицовок, а также ступени, подоконники и др.
Кровельные плитки из глинистого (кровельного) сланца весьма долговечный кровельный материал для сельского строительства. Раскалывая и отрубая материал, ему придают прямоугольную или ромбическую форму.
В дорожном строительстве широко применяют разнообразные изделия из природного камня, например брусчатку, колотый или булыжный камень, бортовые камни. Эти изделия изготовляют из изверженных или осадочных горных пород, которые должны иметь высокую прочность, низкое водопоглощение, хорошо сопротивляться ударным и истирающим нагрузкам, быть морозостойкими, а также не должны быть затронуты выветриванием. Такие же требования предъявляют к каменным материалам (граниту, диориту, диабазу, габбро), предназначенным для защитных плит-оболочек гидротехнических сооружений. Материалы и изделия из природного камня (базальта, диабаза и др.) используют также для конструкций, работающих при высоких температурах. Кроме того, материалы и изделия из гранита, диорита, кварцита, базальта, диабаза и кремнистого песчаника в виде облицовочных камней и плит правильной формы применяют для защиты конструкций зданий и аппаратов от воздействия кислот.
При транспортировании и хранении пиленые и тесаные облицовочные плиты устанавливают на ребро с прокладками, а полированные укладывают в специальные контейнеры лицевой стороной внутрь, прокладывая между ними бумагу. Архитектурные детали и подоконники перевозят в решетчатой таре.
11 ВОПРОС
Основные сведения о керамических материалах и изделиях и их классификация
Керамическими называют изделия и материалы, получаемые из глиняных масс или из их смесей с минеральными добавками путем формования и обжига.
Производство керамических изделий (в основном бытового назначения - посуда, вазы и т. п.) зародилось в глубокой древности, несколько тысяч лет до нашей эры. Значительно позднее стали изготовлять керамические строительные материалы - черепицу, облицовочные плиты и кирпич.
Сегодня керамические материалы и изделия используют для возведения стен и покрытий зданий, облицовки полов, стен, фасадов, кладки печей и дымовых труб, устройства канализации и дренажа и для других целей. Материал (тело), из которого состоят керамические изделия, в технологии керамики называют керамическим черепком.
Строительные керамические изделия классифицируют по структуре керамического черепка, по их конструктивному назначению, состоянию поверхности и т.д.
Сырье для производства керамических материалов
Основным сырьем для производства керамических материалов и изделий являются глины. Для улучшения технологических свойств глин, а также придания готовым изделиям определённых физико-механических свойств применяют отощающие, выгорающие и пластифицирующие добавки.
Глина - тонкодисперсная фракция горных пород, способная образовывать с водой пластичное тесто, сохраняющее после высыхания приданную ему форму и приобретающее после обжига твердость камня.
Глина является продуктом механического разрушения (выветривания) и химического разложения некоторых магматических и метаморфических горных пород, содержащих в своем составе полевой шпат (граниты, сиениты, гнейсы и т.д.). Зерновой состав глин весьма разнообразен. Наличие в составе глин частиц того или иного размера существенно влияет на их свойства. Обычно глины содержат в значительном количестве частицы размером менее 0,005 мм, состоящие в большинстве случаев из каолинита. Такие частицы называют глинистыми. Они придают глине высокие пластические свойства. Более крупные частицы размером 0,005-0,15 мм именуют пылевидными, а частицы размером 0,15-5мм- песчаными. Пылевидная и песчаная фракции свойством пластичности не обладают. Однако песок в определенных пределах можно считать полезной примесью, так как он создает в глиняной массе своеобразный скелет и снижает усадку при сушке и обжиге глины. В зависимости от содержания глинистых частиц различают тяжелые глины (более 60 % глинистых частиц), глины (30-60%), суглинки (10-30%) и супеси (5-10%).
К важнейшим свойствам глин, которые учитывают при производстве керамических материалов, относят пластичность, воздушную и огневую усадку, огнеупорность и цвет глиняного черепка.
Пластичностью называют способность глиняного теста под действием внешних сил принимать заданную форму без образования трещин и сохранять эту форму после снятия нагрузки. Пластичность повышается с увеличением содержания в глине глинистых частиц. Чем глина пластичней, тем больше требуется воды для получения хорошо формуемого глиняного теста, а это, в свою очередь, увеличивает усадку изделий при сушке и обжиге.
Различают глины высокопластичные (жирные), глины средней пластичности и малопластичные (тощие) глины. Жирные глины обладают хорошей пластичностью, связностью и легко поддаются формованию, однако сформованные из них изделия при высыхании значительно уменьшаются в объеме и дают трещины. Тощие глины трудно поддаются формованию. Для повышения пластичности формовочной массы и улучшения качества кирпича и других материалов применяют поверхностно-активные вещества - сульфитно-дрожжевую бражку (СДБ) и др.
При применении для производства керамических материалов высокопластичных глин в сырьевую смесь вводят отощающие добавки или определенное количество малопластичной глины.
Усилие, необходимое для разъединения частиц глин, характеризует ее связность. Высокой связностью обладают глины, содержащие повышенное количество глинистых фракций.
Связующая способность глины выражается в том, что глина может связывать частицы непластичных материалов: песка, шамота (дробленная обожженная огнеупорная глина) и др. и образовывать при высыхании достаточно прочное изделие - сырец.
Воздушной усадкой глин называют изменение линейных размеров свежесформованного образца в процессе сушки при 110°С; ее выражают в процентах от первоначального размера образца-сырца. Высокопластичные глины имеют линейную воздушную усадку более 10%, глины средней пластичности - 6-10% и малопластичные глины - менее 6 %.
Огневой усадкой глин называют изменение линейных размеров воздушно-сухого образца в процессе обжига. Огневая усадка глин в зависимости от их вида обычно находится в пределах 1-4 %.
Полная усадка - арифметическая сумма величин воздушной и огневой усадок. Величина полной усадки, как правило, 5-18 %, наибольшее значение усадки у высокопластичных глин. Большая усадка глины считается отрицательным свойством, так как неравномерное изменение объема вызывает деформации изделия (искривления, трещины). Полную усадку следует учитывать при формовании изделий.
Огнеупорность - свойство глины выдерживать действие высокой температуры без деформации. По огнеупорности глины разделяют на три группы: огнеупорные с температурой размягчения выше 15800С, тугоплавкие с температурой размягчения 1580-13500С, легкоплавкие с температурой размягчения ниже 13500С.
Огнеупорные глины состоят из глинистых частиц, содержат небольшое количество примесей и поэтому обладают высокой пластичностью. Применяют эти глины для изготовления огнеупорных, фарфоровых и фаянсовых изделий. Тугоплавкие глины используют в производстве плиток для полов, канализационных труб и других видов строительной керамики. Из легкоплавких глин изготовляют красный глиняный кирпич, пустотелые керамические камни, черепицу и другие изделия.
Цвет глиняного черепка после обжига зависит от состава и количества примесей в глине. Каолины, являясь наиболее чистым глиняным сырьем, дают черепок белого цвета. Оксиды железа придают керамическим изделиям окраску от светло-желтой до темно-красной и бурой. Вводя в глину минеральные красители можно получать керамические изделия различных цветов и оттенков.
12 ВОПРОС
Производство керамических материалов и изделий
Керамические материалы и изделия имеют разнообразные размеры, форму, физико-механические свойства и различное назначение, но основные этапы технологического процесса производства их примерно одинаковы и складываются из добычи сырьевых материалов, подготовки сырьевой массы, формования изделия (сырца), сушки, обжига, сортировки обожженных изделий, упаковки и хранения их на складе.
Добыча глины. Глину для производства керамических материалов и изделий добывают в карьерах, расположенных обычно в непосредственной близости от завода, одно- или многоковшовыми экскаваторами и другими машинами и механизмами.
Подготовка сырьевой массы. В естественном состоянии глина обычно непригодна для формования изделий. Нужно разрушить природную структуру глины, удалить из нее вредные примеси, измельчить крупные включения, смешать глину с добавками, а также увлажнить ее, чтобы получить удобоформуемую массу.
Сырьевую смесь готовят полусухим, пластическим или мокрым (шликерным) способами. Выбор того или иного способа зависит от свойств сырьевых материалов, состава керамических масс и способа формования изделий, а также от их размеров и назначения.
При полусухом способе сырьевые материалы высушивают, дробят, размалывают и тщательно перемешивают. Сушат глину обычно в сушильных барабанах, дробят и размалывают в бегунах сухого помола, дезинтеграторах или шаровых мельницах, а смешивают в лопастных мешалках. Влажность пресс-порошка - 9-11 %. Увлажняют пресс-порошок водой или паром до приобретения необходимой влажности.
Полусухой способ подготовки сырьевой смеси применяют в производстве строительного кирпича полусухого прессования, плиток для полов, облицовочных плиток и др.
При пластическом способе сырьевые материалы смешивают при естественной влажности или с добавлением воды до получения глиняного теста влажностью 18-23 %. Для измельчения и переработки сырьевых материалов используют вальцы и бегуны различных типов, а для перемешивания - глиномешалки.
Пластическим способом готовят сырьевую смесь для производства керамического кирпича пластического формования, керамических камней, черепицы, труб и др.
При шликерном способе сырьевые материалы предварительно измельчают в порошок, а затем тщательно смешивают в присутствии большого количества воды, получая однородную суспензию (шликер). Этот способ применяют при производстве фарфоровых и фаянсовых изделий, облицовочных плиток и др.
Формование изделий. Формуют керамические изделия различными способами: пластическим, полусухим и литья. Выбор способа формования зависит от вида изделий, а также от состава и физико-механических свойств сырья.
Пластический способ формования - изготовление изделий из пластических глиняных масс на прессах - наиболее распространен в производстве строительных керамических изделий.
Подготовленную глиняную массу влажностью 18-23 % направляют в приемный бункер ленточного пресса. При помощи шнека масса дополнительно перемешивается, уплотняется и выдавливается в виде бруса через выходное отверстие пресса, снабженного сменным мундштуком. Меняя мундштук, можно получать брус различных формы и размеров. Непрерывно выходящий из пресса брус автоматическое резательное устройство разрезает на отдельные части в соответствии с размерами изготовляемых изделий.
Современные ленточные прессы снабжены вакуум-камерами, в которых из глиняной массы частично удаляется воздух. Вакуумирование массы повышает ее пластичность и уменьшает формовочную влажность, сокращает длительность сушки сырца и одновременно повышает его прочность.
Полусухим способом формуют облицовочные плитки, плитки для полов и другие тонкостенные керамические изделия. Этим способом можно изготовлять кирпич и другие изделия из малопластичных, тощих глин, что расширяет сырьевую базу производства изделий строительной керамики. Существенное преимущество полусухого способа формования по сравнению с пластическим - применение глиняной массы с меньшей влажностью (8-12 %), что значительно сокращает или даже исключает сушку сырца.
При полусухом способе каждое изделие формуют отдельно на высокопроизводительных прессах, обеспечивающих двустороннее прессование пресс-порошка в формах под давлением до 15 МПа. Сырец полусухого прессования имеет четкую форму, точные размеры, прочные углы и ребра.
Способ литья применяют для изготовления санитарно-технического фаянса и облицовочных плиток. При этом способе предварительно измельченную глиняную массу влажностью более 45 % (шликер) заливают в специальные формы или используют при формовании плиток.
Сушка изделий. Сформованные изделия (сырец) необходимо сушить, чтобы снизить их влажность, например, кирпич-сырец сушат до влажности 8-10 %. За счет сушки повышается прочность сырца, предотвращаются растрескивание и деформация его в процессе обжига. Сушка может быть естественной и искусственной.
Естественная сушка в сушильных сараях не требует затрат топлива, но продолжается очень долго (10-15 сут) и зависит от температуры и влажности окружающей среды (воздуха). Кроме того, для естественной сушки требуются помещения с большой площадью.
В настоящее время на крупных заводах, как правило, производят искусственную сушку сырца в камерных сушилках периодического действия и туннельных непрерывного действия.
Режим сушки выбирают в соответствии с видом изделия. В качестве теплоносителя в сушилках применяют дымовые газы обжигательных печей, а также газы, получаемые в специальных топках.
Длительность искусственной сушки сырца составляет от 1 до 3 сут, а для тонкостенных изделий - несколько часов.
Обжиг изделий - завершающий этап технологического процесса производства керамических изделий. Процесс обжига можно условно разделить на три периода: прогрев сырца, собственно обжиг и охлаждение. При прогреве сырца медленно поднимают температуру до 100-1200С, при этом из него удаляется свободная вода. Дальнейшее повышение температуры до 7500С приводит к выгоранию органических примесей и удалению химически связанной воды, находящейся в глинистых минералах и других соединениях сырьевой смеси.
В процессе собственно обжига при 800-9000С легкоплавкие соединения расплавляются и обволакивают нерасплавившиеся частицы, при этом уменьшаются линейные размеры изделия и оно уплотняется. При дальнейшем повышении температуры глиняная масса спекается. Максимальная температура обжига зависит от свойств используемых глин и вида обжигаемого изделия. В результате обжига керамическое изделие приобретает камневидное состояние, высокие прочность, водостойкость, морозостойкость и другие строительные свойства.
Обжигают керамические изделия в кольцевых, туннельных, щелевых, роликовых и других печах.
Кольцевая печь представляет собой эллипсообразный замкнутый обжигательный канал, условно разделенный на камеры. Количество камер кольцевой печи в зависимости от ее производительности колеблется от 16 до 36. Условные камеры объединяются в группы - зоны, расположенные в следующей последовательности: загрузка, подогрев, собственно обжиг, охлаждение и выгрузка. В кольцевой печи очаг горения, как и другие зоны, непрерывно перемещается по обжигательному каналу, а обжигаемая продукция находится на месте.
В кольцевых печах обжигают в основном кирпич и черепицу. Температура обжига 900-11000С. Весь цикл обжига в кольцевой печи длится 3-4 сут.
Туннельная печь - сквозной канал длиной до 100 м, в котором по рельсам движутся вагонетки с обжигаемыми изделиями. В туннельной печи имеются те же зоны, что и в кольцевой, и совершаются те же операции загрузки, подогрева, обжига, охлаждения и выгрузки. Однако в туннельной печи передвигаются по зонам изделия, а сами зоны остаются на месте.
Длительность процесса обжига 18-36 ч. Туннельные печи значительно производительнее и экономичнее кольцевых печей, кроме того, в них брак кирпича значительно ниже. Керамические материалы, в частности облицовочные глазурованные фаянсовые плитки, обжигают дважды. При первом (утельном) обжиге плитки, помещаемые в специальные капсели, обжигают в туннельных печах при 1240-12500С. Затем после охлаждения их сортируют, наносят слой глазури, укладывают в капсель и обжигают вторично в другой туннельной печи при 11400С.
Для получения глазури служит смесь легкоплавкой глины, кварцевого песка, полевого шпата, оксида свинца, цинка и др.
13 ВОПРОС
Стеновые керамические материалы и изделия
Среди большой группы стеновых керамических материалов и изделий в настоящее время наиболее распространены керамический кирпич, различные виды эффективных керамических материалов, а также стеновые кирпичные панели.
Кирпич керамический полнотелый имеет форму прямоугольного параллелепипеда размером 250х120х65 мм или 250х120х88 мм. Для модульного кирпича толщиной 88 мм обязательно наличие технологических пустот. Допускаемые отклонения от указанных размеров не должны превышать: по длине +5, по ширине +4, по толщине +3 мм.
Кирпич должен быть нормально обожжен. Кирпич-недожог алого цвета, пониженной плотности и морозостойкости, кирпич-пережог отличается большой плотностью, прочностью и сравнительно высокой теплопроводностью.
Плотность кирпича в сухом состоянии колеблется в пределах 1600-1900 кг/м3 а теплопроводность - 0,71-0,82 Вт/(м 0С). Эти свойства кирпича зависят от способа его изготовления. Большую плотность, следовательно, и большую теплопроводность имеет кирпич полусухого прессования.
По пределу прочности при сжатии и изгибе кирпич подразделяют на следующие марки: 75, 100, 125, 150, 175, 200 и 300.
Водопоглощение кирпича, высушенного до постоянной массы, должно быть не менее 8%. Меньшая величина водопоглощения свидетельствует о повышенной теплопроводности кирпича, что нежелательно.
По морозостойкости насыщенный водой кирпич должен выдерживать без каких-либо признаков видимых повреждений (расслоения, выкрашивания и т. д.) не менее 15 циклов попеременного замораживания при -150С и ниже с последующим оттаиванием в воде при +150С.
Керамический кирпич применяют для кладки внутренних и наружных стен, столбов, сводов и других частей зданий. Кроме того, из него изготовляют кирпичные панели.
Для уменьшения массы и толщины наружных стен взамен обычного кирпича широко применяют эффективные керамические материалы, которые характеризуются меньшей плотностью, более низкой теплопроводностью, чем обычный кирпич, но обладают достаточной прочностью.
По теплотехническим свойствам и плотности кирпич и камни (все керамические изделия конструктивного назначения, имеющие размеры больше кирпича, называют керамическими камнями), в высушенном до постоянной массы состоянии, подразделяют на: эффективные, улучшающие теплотехнические свойства стен зданий и позволяющие уменьшить их толщину по сравнению с толщиной стен из обыкновенного кирпича (кирпич плотностью не более 1400 кг/м3 и камни плотностью не более 1450 кг/м3) и условно эффективные, улучшающие теплотехнические свойства ограждающих конструкций (кирпич плотностью свыше 1400 кг/м3 и камни плотностью 1450-1600 кг/м3).
К эффективным стеновым керамическим материалам относят пустотелые керамические кирпич и камни. Они имеют форму прямоугольного параллелепипеда с ровными гранями на лицевых поверхностях. Пустоты в кирпиче и камнях должны располагаться перпендикулярно или параллельно постели и могут быть сквозными или несквозными. Диаметр цилиндрических сквозных пустот не более 16 мм, ширина щелевидных пустот не более 12 мм. Толщина наружных стенок кирпича и камней должна быть не менее 12 мм. Водопоглощение пустотелых изделий не менее 6%. По прочности кирпич и камни подразделяют на марки: 300, 250, 200, 175, 150, 125,100, 75, а по морозостойкости на марки: 15, 25, 35 и 50.
Пустотелый кирпич применяют для кладки наружных и внутренних стен зданий и для заполнения стен каркасных зданий. Не разрешается использовать этот кирпич для кладки стен зданий бань, прачечных и т. п. Из пустотелых камней возводят несущие стены и перегородки, стены каркасных зданий, изготовляют кирпичные панели. Применяя пустотелые керамические камни, удается снизить толщину и массу стен, снизить трудоемкость кладки и ее стоимость.
К эффективным керамическим материалам относят также сплошные и пустотелые кирпичи и камни, которые изготовляют из смеси глины и диатомитов или трепелов путем пластического или полусухого формования и последующего обжига. Плотность их от 700 до 1500 кг/м3. Кирпич и камни выпускают пяти марок: 200, 150, 125, 100 и 75. Применяют их для кладки наружных и внутренних стен зданий и сооружений.
Стеновые кирпичные панели представляют собой индустриальные изделия заданных размеров, в которых отдельные кирпичи или керамические камни сцементированы в монолит цементно-песчаным раствором. По назначению различают панели для наружных и внутренних стен, а также специальные панели (цокольные, вентиляционные и др.).
Кирпичные панели наружных стен изготовляют двухслойными и однослойными толщиной 260 мм. Перспективны однослойные панели из укрупненных крупнопустотных или щелевых камней. Панели внутренних несущих стен выполняют однослойными из обыкновенного кирпича и армируют металлическими каркасами. Общая толщина панелей 140 мм, включая толщину кирпича 120 мм и два слоя раствора с каждой стороны по 10 мм.
Технологический процесс изготовления кирпичных панелей состоит из следующих основных операций: приготовления цементно-песчаного раствора, изготовления арматурного каркаса, формования панели, ее тепловлажностной обработки и отделки.
Готовые панели хранят на открытых складах в вертикальном положении, в таком же положении их транспортируют панелевозами на строительную площадку.
Основные преимущества применения кирпичных панелей по сравнению с кладкой стен из штучного кирпича или керамических камней - возможность изготовления крупноразмерных элементов в заводских условиях, монтаж их на строительной площадке при помощи современных средств механизации, а также возможность значительной экономии стеновых материалов.



14 ВОПРОС
Стекло. Строение. Классификация по составу. Влияние состава на свойства. Область применения.
Неорганическое стекло – химически сложные аморфные изотропные материалы, которые обладают свойствами хрупкого твёрдого тела. Стёкла состоят: 1. Стеклообразователи – основа: а) SiO2 – силикатное стекло, если SiO2 > 99%, то это кварцевое стекло; б) Al2O3 + SiO2 – алюмосиликатное стекло; в) B2O3 + SiO2– боросиликатное стекло; г) Al2O3 + B2O3 + SiO2 – алюмоборосиликатное стекло; 2. Модификаторы, вводятся для придания стеклу определённых св-в. Ввод оксидов щелочноземельных металлов (I, II группа: Na, K) уменьшает температуру размягчения. Оксиды хрома, железа, ванадия придают стеклу определённые цвета. Оксиды свинца увеличивают коэффициент преломления. По количеству модификаторов стёкла бывают трёх типов: щёлочные – стёкла, в которых содержится модификаторов до 20-30%, бесщёлочные – до 5% модификаторов, кварцевое стекло – модификаторов нет; 3. Компенсаторы, подавляют негативное воздействие модификаторов. Стёкла в автомобилях, в стеклопластиках, оптика, теплопроводимость низкая, не растворимы в кислотах (кроме плавиковой HF) и щёлочах.
Стекло и стеклянные изделия.
Стекло – переохлаждённый расплав сложного состава из смеси силикатов и других веществ. Отформованные стеклянные изделия подвергают специальной термической обработки – обжигу.
Оконное стекло выпускают в листах размером от 250х250 до 1600х2000мм двух сортов. По толщине стекло делят на одинарное (толщиной 2мм), полуторное (2,5мм), двойное (3мм) и утолщённое (4…6мм).
Витринное стекло выпускают полированным и неполированным в виде плоских или гнутых листов толщиной 6..12 мм. Применяют его для остекления витрин и проёмов.
Стекло листовое высокоотражающее – это обычное оконное стекло, на поверхность которого нанесена тонкая полупрозрачная отражающая свет плёнка изготовленная на основе окиси титана. Стекло с плёнкой отражает до 40% входимого света, светопропускание 50…50%. Стекло уменьшает просмотр с наружной стороны и снижает проникание внутрь помещения солнечной радиации.
Стекло листовое радиозащитное – это обычное оконное стекло, на поверхность которого нанесена тонкая прозрачная экранирующая плёнка. Экранирующую плёнку наносят на стекло в процессе его формирования на машинах. Светопропускание не ниже 70%
Армированное стекло –изготавливают на поточных линиях методом непрерывного проката с одновременным закатыванием внутрь листа металлической сетки. Это стекло имеет гладкую, узорчатую поверхность, может быть бесцветным или цветным.
Стекло теплопоглощающее обладает способностью поглощать инфракрасные лучи солнечного спектра. Оно предназначено для остекления оконных проёмов с целью уменьшения проникания солнечной радиации внутрь помещений. Это стекло пропускает лучи видимого свет


Дата добавления: 2015-09-29; просмотров: 51 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
High Gravure 0.53 х 10м | Прайс лист на печать фотографий. Плотность до 200 г/м2

mybiblioteka.su - 2015-2024 год. (0.012 сек.)