Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Обработка воды с целью подготовки ее для питья, хозяйственных и производственных целей представляет собой комплекс физических, химических и биологических методов изменения ее первоначального



Обработка воды с целью подготовки ее для питья, хозяйственных и производственных целей представляет собой комплекс физических, химических и биологических методов изменения ее первоначального состава. Под обработкой воды понимают не только очистку ее от ряда нежелательных и вредных примесей, но и улучшение природных свойств путем обогащения ее недостающими ингредиентами. Все многообразие методов обработки воды можно подразделить на следующие основные группы: улучшение органолептических свойств воды (осветление и обесцвечивание, дезодорация и др.); обеспечение эпидемиологической безопасности (хлорирование, озонирование, ультрафиолетовая радиация и др.); кондиционирование минерального состава (фторирование и обесфторивание, извлечение ионов тяжелых металлов, обезжелезивание, деманганация, умягчение или обессоливание и др.). Метод обработки воды выбирают на основе предварительного изучения составаи свойств воды источника, намеченного к использованию, и их сопоставления с требованиями потребителя.

Основными способами улучшения качества воды поверхностных водоисточников являются осветление, обесцвечивание и обеззараживание.

Осветление воды — это удаление из нее взвешенных веществ.

Обесцвечивание — устранение окрашенных коллоидов или истинно растворенных веществ.

Обеззараживание — обезвреживание содержащихся в воде источника патогенных бактерий и вирусов.

Для осветления и обесцвечивания применяют следующие способы:

· естественное отстаивание и фильтрация на медленных фильтрах;

· коагуляция, отстаивание и фильтрация на быстрых фильтрах;

· коагуляция и фильтрация в контактных осветлителях.

В современных условиях большое значение имеет предварительное удаление из воды зоопланктона (мельчайших животных организмов) и фитопланктона (мельчайших растительных организмов). Для этого используют микрофильтры и барабанные сетки, через которые производится процеживание воды.Для осветления и обесцвечивания в комплекс сооружений по очистке воды входят: отстойники, смесители, камеры реакции, фильтры и т.д. Отстойники (горизонтальные, вертикальные) — сооружения, предназначенные для осаждения под силой тяжести в основном крупных по размеру и массе частиц, находящихся в воде во взвешенном состоянии.Недостатком естественного осаждения взвеси в отстойниках является длительность этого процесса, при котором не обеспечивается осаждение основной части мелкой взвеси и всех коллоидных частиц. С целью ускорения и повышения эффективности выпадения взвешенных веществ и удаления коллоидных веществ в отстойниках перед отстаиванием производится коагуляция воды. Коагуляцией называется процесс укрупнения, агрегации коллоидных и тонкодиспергированных примесей воды, происходящий вследствие взаимного слипания под действием сил молекулярного притяжения. Процесс коагуляции завершается образованием видимых невооруженным глазом агрегатов — хлопьев. Различают коагуляцию в свободном объеме (в камерах хлопьеобразования) и контактную коагуляцию, протекающую в толще зернистой загрузки или в массе взвешенного осадка.Коагуляция происходит под влиянием химических реагентов — коагулянтов, к которым относятся соли алюминия (алюминия сульфат, алюминия оксихлорид) и железа (железа сульфат, железа хлорид). Для ускорения процесса коагуляции применяют вещества флоккулянты двух типов: анионного (полиакриламид, К-4, К-6, активизированная кремниевая кислота) и катионного (ВА-2 и др.).Перемешивание воды с раствором коагулянта происходит в смесителях, а реакция коагуляции — в свободном объеме в камерах реакции.Специалистами установлено, что эффект осветления воды, то есть увеличение ее прозрачности в результате выпадения взвеси в осадок, резко возрастает при ее прохождении через слой ранее образовавшегося осадка. Водоочистные сооружения, работающие по этому принципу, получили название осветлителей со слоем взвешенного осадка (пресипитаторов). При этом производится одновременно процесс коагуляции и отстаивания. К сооружениям этого типа можно отнести: отстойник осветлитель, осветлитель коридорного типа с рециркуляцией осадка, АзНИИВП-2 с тонкослойными модулями и напорный осветлитель с выносным осадкоуплотнителем.Для осветления воды, содержащей грубодисперсные примеси, могут применяться центрифуги и гидроциклоны. Их действие основано на использовании центробежных сил, которые в сотни и тысячи раз выше силы тяжести, за счет чего увеличивается скорость осаждения частиц. Режим движения жидкости — турбулентный. При этом в аппарате частицы взвеси центробежной силой переносятся к периферии. Гидроциклоны бывают открытыми (одно- и многоярусные) и напорными (обычные и мультициклоны). Фильтрация — это следующий после коагуляции и отстаивания процесс для освобождения воды от взвешенных веществ, оставшихся после первых этапов очистки. Сущность фильтрации заключается в пропуске воды через мелкопористый материал (с зернистой загрузкой), на поверхности, в верхнем слое или в толще которого задерживаются взвешенные частицы.Для фильтрации применяется фильтр, который представляет собой устройство для разделения неоднородных систем, содержащих твердую и жидкую фазы.Фильтры классифицируют:



· по скорости фильтрации — медленные (0,1-0,3 м/ч) и скорые (5-10 м/ч);

· по направлению фильтрующего потока — одно- и двухпоточные;

· по числу фильтрующих слоев — одно- и двухслойные;

· по гидравлическим условиям работы — ненапорные и напорные;

· по составу фильтрующей основы — зернистые (песчаные, антрацитовые и др.), сетчатые (микрофильтры, микросита), каркасные или намывные;

· по величине фильтрующего материала — мелкозернистые (0,2-0,4 мм), среднезернистые (0,4-0,8 мм) и крупнозернистые (0,8-1,5 мм).

Фильтр с зернистой загрузкой представляет собой железобетонный резервуар, заполненный фильтрующим материалом обычно в два слоя. В качестве фильтрующего материала используют кварцевый песок, антрацитовую крошку, керамзит (дробленый и недробленый), некоторые вулканические шлаки, пенополистирол и другие.

Для того, чтобы фильтрующий материал не уносился вместе с фильтруемой водой, используют поддерживающий слои, который состоит из слоев гравия или щебня разных размеров, увеличивающихся сверху вниз постепенно. Ниже фильтрующего и поддерживающего слоев находится дренажное пространство, предназначенное для приема профильтрованной воды.

Существует два принципиально отличающихся друг от друга метода фильтрации воды.

Пленочная фильтрация предполагает образование биологической пленки из ранее задержанных примесей в верхнем слое фильтрующей загрузки. В начале, вследствие механического осаждения частиц взвеси и их прилипания к поверхности загрузочного материала (например песка), уменьшается размер пор. Затем на поверхности песка развиваются водоросли, бактерии и другие живые организмы, дающие начало илистому, состоящему из минеральных и органических веществ осадку (биологическая пленка). Пленка достигает толщины 0,5-1 мм и более. Она играет решающую роль в работе медленных фильтров, задерживает мельчайшие взвеси, 95-99 % бактерий, обеспечивает снижение на 20-45 % окисляемое™ и на 20 % цветности. Очистка медленных фильтров производится путем удаления 2-3 см верхнего наиболее загрязненного слоя загрузки.

Объемная фильтрация осуществляется на скорых фильтрах и представляет собой физико-химический процесс, при котором механические примеси воды проникают в толщу фильтрующей загрузки и адсорбируются на поверхности ее частиц и хлопьев коагулянта. В результате уменьшения размеров пор возрастает сопротивление загрузки при фильтровании и потеря напора. В процессе объемной фильтрации задерживается около 95 % бактерий. Скорые фильтры, пропуская большее количество воды, быстро засоряются и чаще требуют очистки. Очистка их производится обратным током чистой профильтрованной воды, подаваемой в дренажное пространство со значительной скоростью.

Существует большое количество моделей скорых фильтров. В их числе скорые фильтры с двухслойной загрузкой, с двухсторонней фильтрацией — двухпоточный (АКХ), контактный осветлитель и другие.

Для очистки вод с незначительной мутностью и высоким содержанием органических соединений, которые плохо поддаются обработке в отстойниках и осветлителях, эффективным методом очистки является флотация.

Флотация — это процесс, сущность которого заключается в том, что коллоидные и дисперсные примеси соединяются с пузырьками воздуха, тонко диспергированного в воде. Комплексы, которые образуются при этом, всплывают и образуют пену на поверхности флотационного устройства (флотатора).

Снижение поверхностного натяжения на границе вода-воздух приводит к повышению эффективности очистки воды методом флотации. Для этого в воду добавляют поверхностно-активные вещества (флотореагенты).

Централизованное водоснабжение большинства населенных пунктов России преимущественно ведется из поверхностных водоисточни­ков, характеризующихся высоким уровнем загрязнения Существующие сооружения водоподготовки и применяемые технологические процессы часто уже не в состоянии обеспечить требуемое качество питьевой воды, поскольку рассчитаны на уровни загрязнения поверхностных вод, существовавшие 40÷50 лет назад и, в основном, направлены на улучшение прежде всего органолептических и микроби­ологических показателей качества воды.

В отечественном хозяйственно-питьевом водоснабжении используются типовые технологические схемы очистки: в зависимости от степени загрязненности исходной воды — двухступенчатая (отстойни­ки или осветлители со слоем взвешенного осадка — на первой ступе­ни и скорые фильтры — на второй ступени) или одноступенчатая (контактные осветлители или прямоточные фильтры). Рассматривая эти схемы с современных позиций, можно отметить их не­достаточную надежность и эффективность. В первую очередь это обусловлено тем, что в их применяются устаревшие сооружения и реагентные методы очистки. Применяемые технологии очищают воду, в основном, от дисперсных частиц. Молекулярно растворенные вещества и ионы остаются в воде. Таким образом, многие токсичные вещества не улавливаются на водоочистных сооружениях и попадают в водопро­водную сеть

Необходимо отметить, что существующие технологические схемы способны оказывать негативное воздействие. Так, применяемые в хо­де водоподготовки для обеззараживания воды процедуры хлорирования и озонирования, в случае наличия в воде органических соединений, приводят к появлению высокотоксичных веществ.

В результате хлорирования воды, содержащей гуминовые вещест­ва фенольной природы, образуются хлорфенолы, хлороформ и даже диоксины. Появление в питьевой воде токсичных продуктов озонирования — формальдегида, бензальдегида, ацетальдегида, также может быть обусловлено физико-химическими характеристиками природных вод. Озонирование воды, в которой присутствуют пестици­ды, может привести к появлению более токсичных и стабильных недоокисленных эпоксидов с ненасыщенными двойными связями. Например, элдрин окисляется до диэлдрина, гептахлор до гептахлорэпоксида

Исследование содержания хлорорганических соединений в водо­заборе г.Питкяранта и г.Приозерск (Ладожское озеро) и в водопро­водной воде показало, что в процессе водоподготовки (хлорирова­ния) в 39 раз возросла концентрация хлороформа, в 5 раз — четы­реххлористого углерода, в 4,5 раза — 1,2-дихлорэтана, в 4,4 раза — тетрахлорэтана, в 8,3 раза — хлорбензола, появились трихлорэтан и трихлорфенол (табл.1.)

Содержание летучих хлорорганических соединений в водах Ладожского озера и питьевой воде городов Приозерск и Питкяранта

Вещество

Водозабор, мкг/л

Питьевая вода, мкг/л

ПДК, мкг/л

США

ВОЗ

РФ

Хлороформ

9,0

350,0

     

Четыреххлорис­тый углерод

4,0

20,0

     

1,2-дихлорэтан

2,0

9,0

     

Трихлорэтан

-

10,0

     

Тетрахлорэтан

2,5

11,0

     

Бромдихлорэтан

3,0

-

 

 

 

Бензол

40,0

30,0

   

-

Трихлорфенол

-

3,0

-

 

-

Хлорбензол

6,0

50.0

-

 

-

Примечание: ВОЗ — всемирная организация здравоохранения

При изучении мутагенной активности питьевой воды обнаружено, что при применяемых режимах хлорирования отмечается интенсивное образование мутагенов, радикальных и ион-радикальных частиц, которые могут обладать весьма длительным временем жизни

Установлена прямая зависимость между величиной цветности воды, обусловленной гуминовыми веществами, и содержанием хлорорганических веществ после ее хлорирования. При этом обнаружены сильные корреляционные связи уровней онкологической смертности, индукции рака печени и мочевого пузыря и частоты спонтанных абортов с величинами цветности хлорированной воды

В качестве профилактических мероприятий, направленных на снижение мутагенного и канцерогенного риска, возникающего при хлорировании высокоцветных гумусовых вод, необходимо добиваться максимального снижения цветности хлорируемой воды минимум до ве­личины, определенной ВОЗ в 15° и изменение статуса этого признака вредности хлорированной воды с органолептического на токсикологический

Наряду с растущим загрязнением источников питьевого водос­набжения отмечается ухудшение санитарно-технического состояния водопроводных сооружений и сетей. Остаточные количества реагентов, используемых в процессе водоподготовки, оказывают влияние на интенсивность коррозии металлических водопроводных труб. Стальные и чугунные трубы дают течь уже через 5-6 лет эксплуатации. В результате длительного контакта с металлическими трубами, подвергшимися коррозии, вода приобретает запах (3÷4 балла), цветность (до 100° и выше), увеличивается содержание железа (до 5÷6 мг/л), меди, цинка, возрастает мутность

Для удаления из обрабатываемой воды растворенных в ней вредных веществ необходимы дополнительные звенья водообработки. В большинстве же случаев на отечественных водопроводных станциях не хватает мощностей даже для традиционной схемы обработки воды, не говоря об усложнении технологии водоподготовки. В РФ в 1995 г. 12,9% коммунальных водопроводов не имели необходимого набора соо­ружений водоподготовки, на 15% не осуществлялось обеззараживание воды. В результате частота выявления неблагоприятных санитар-но-химических и микробиологических показателей стабилизировалась на высоком уровне и составила в 1995 г. соответственно 21,5 и 8,7 %, в 1998 г. — 29,03 и 9,7% /1/.

В целом около половины населения России вынуждено использовать для питьевых целей воду, не соответствующую по ряду показателей гигиеническим требованиям

Положение с состоянием водоочистки усугубляется экономическим положением в стране, не позволяющем даже в ближайшей перспек­тиве осуществить коренную реконструкцию водоочистных станций за счет применения разработанных в настоящее время перспективных технологий.

Основными физико-химическими методами, используемыми в мире для подготовки питьевой воды, являются сорбция, ионный обмен, озонирование, УФ-обработка, коагуляция, мембранные методы. Реже при очистке используют аэрирование, дистилляцию и другие процессы

Широко известны способы умягчения и опреснения воды реагентной обработкой. Кроме того, разработаны способы ионобменного и мембранного умягчения, в частности, Nа-катионирование при котором неизменной остается щелочность воды и Н-Nа-катионирование, приме­няемое, когда требуется понизить щелочность воды. На основе этих процессов разработаны технологии «Сиротерм» и «Карикс»

Наряду с физико-химическими методами для подготовки питьевой воды используют и биологические, особенно при очистке от аммиака, нитратов, железа, ряда синтетических веществ, удаления цветности. Применение биологической очистки позволяет значительно увеличить ресурс физико-химических методов. Этот способ используется во Франции и Германии при исходном содержании в воде азота 40÷140 мг/л

Присутствующие в воде тяжелые металлы могут быть устранены реагентной обработкой. Так при добавлении гидроокиси натрия к воде до рН 8,3 и дальнейшей фильтрации и отстаивании, устраняется более 70% ионов цинка; более — 97% хрома; 99, 5% - кадмия; а также 100% — свинца, меди и железа. Ионы хрома также удаляются (при его содержании до 200 мкг/л) сульфатом железа с последующим фильтро­ванием и осветлением

В последнее время развиваются исследования, посвященные при­менению процессов обратного осмоса и ультрафильтрации для получе­ния питьевой и высокоочищенной воды. Эти процессы позволяют получать качественную питьевую воду из природных водоисточников. Так, например, во Франции (департаменты Души и Амонкур) работают установки на основе данных процессов, обеспечивающие питьевой водой целые поселки. Но высокая стоимость очистки ограничивает их широкое внедрение на отечественных водоочистных станциях. В РФ дело пока ограничивается выпуском бытовых мембранных водоочистителей

Разрабатываются различные модификации электроимпульсного метода для его применения в процессах водоочистки и водоподготовки. Импульсное питание позволяет существенно сократить затраты электроэнергии, уменьшить время проведения технологического процесса, а также упростить техническое обслуживание установок и повысить надежность их работы

Одним из основных способов подготовки питьевой воды является сорбция на пористых сорбентах (чаще всего фильтрование через не­подвижный слой сорбента). В качестве сорбентов используются гранулированные и порошкообразные активированные угли, минеральные адсорбенты, полимерные материалы и т.д.

На отечественных водоочистных станциях наиболее часто в ка­честве фильтрующей загрузки используется песок. Зачастую песок характеризуется неудовлетворительным гранулометрическим составом и скатанной формой зерен, что безусловно негативно сказывается на его фильтрационных свойствах

Более качественными фильтрующими материалами является гранитная крошка и другие дробленые материалы, обладающие большей грязеемкостью. Это их преимущество в первую очередь объясняется большей пористостью, а также дефектами кристаллической решетки, возникающими при дроблении и увеличивающими энергетическую по­верхность зерен

В результате использования дробленых материалов обеспечиваются меньший темп прироста потерь напора, большая степень насыщения порового пространства загрузки осадком и более благоприятные гидродинамические характеристики пористой среды в части прилипа­ния и отрыва загрязнений от зерен загрузки, что обеспечивает бо­лее интенсивный вынос загрязнений из загрузки уже на первых минутах промывки

К числу таких новых фильтрующих материалов относятся крошка из отсевов гранитного щебня (Киркинский карьер Выборгского место­рождения) и габбро-диабазного щебня (карьер расположен под Петрозаводском)

Применение указанных материалов в качестве загрузки фильтровальных сооружений позволяет увеличить продолжительность фильтроцикла на 30÷40% по сравнению с сооружениями, загруженными тради­ционным песком скатанной формы

За рубежом в технологических схемах водоподготовки широко используют активированный уголь (АУ)

Основная направленность использования АУ — удаление из воды загрязнений и примесей органической природы. Он обладает высокой сорбционной активностью по отношению к хлор-, гидроксил-, амино-, нитропроизводным бензола, и других ароматических соединений

Наиболее типичными органическими примесями питьевой воды яв­ляются галоидуглероды и пестициды. Эти вещества в разной степени удаляются из воды сорбционными методами. Так, при использовании сочетания сорбции на АУ с воздействием КМn04, содержание тригалометанов в очищаемой воде снижается на 35%. Сочетание биологичес­кой стадии очистки с сорбцией на АУ позволяет полностью удалить из речной воды трихлорэтан и 1, 2, 4-трихлорбензол

АУ в модельных экспериментах извлекает из воды 85÷100% гид­рофобных веществ (тригалометаны, хлороформ, четыреххлористый углерод), в то же время его использования для удаления гидрофильных соединений (определяемых частично показателем общего органического углерода) недостаточно (25÷75%). Присутствие же в очищаемой воде природных органических веществ (на уровне 10 мг/л по общему органическому углероду) резко снижает величину сорбции.

Так, при сорбции природных гуминовых соединений с использо­ванием экономически приемлемых доз АУ удается извлечь 50÷70% органических соединений. В фильтрат попадают фракции наиболее окисленных (более гидрофильных) фульвокислот

Это обстоятельство заставляет предусматривать в схеме очист­ки питьевой воды от тригалометанов с использованием АУ предвари­тельное удаление природных органических веществ. Указанное каса­ется и загрязнения пестицидами: наличие в воде природных органи­ческих соединений приводит к уменьшению ресурса действия сорбционного фильтра с АУ и проскоку пестицидов в фильтрат

Для удаления больших неионогенных поверхностно-активных ве­ществ (ПАВ) (полиэтиленгликолевые эфиры жирных кислот, спиртов, алкилфенолов) применение АУ неэффективно из-за стерической недос­тупности микропор (г = 0,5÷10 нм) для таких молекул. Для удаления из воды таких молекул необходимы АУ, обладающие развитой переход­ной пористостью. Однако при получении таких АУ потери при обжиге составляют до 75% и больше. Это повышает и без того значительную стоимость углей (порядка 3000$ за тонну) и понижает механическую прочность гранул

Таким образом, недостатками АУ является низкая прочность на истирание, потери при термической регенерации (от 30 до 75%), невысокая избирательность по отношению к органическим соединениям с высокой растворимостью и крупным неиногенным молекулам.

В настоящее время совершенствование АУ путем выбора сырья и режимов технологической подготовки практически исчерпано. Даль­нейшее усиление поглотительных свойств сорбентов по отношению к органическим веществам, содержащимся в воде, непосредственно свя­зано с научными исследованиями, нацеленными на изменение их по­верхностных свойств (создание искусственных науглероженных сор­бентов)

По нашему мнению, именно сорбционные процессы дают наилучшие результаты. Для нашей страны наиболее перспективным подходом к решению проблемы качества питьевой воды может быть использование природных минеральных сорбентов как в технологических схемах на водопроводных станциях, так и для доочистки воды потребителями.

 


Дата добавления: 2015-08-29; просмотров: 75 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
4. Методы расчета по предельным состояниям. Цель расчета строительных конструкций - обеспечить заданные условия эксплуатации и необходимую прочность при минимальном рас­ходе материалов и минимальной | Лекция № 3. Методы улучшения качества воды

mybiblioteka.su - 2015-2024 год. (0.018 сек.)