Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Модель внутриклеточных колебаний кальция. Анализ системы.



МОДЕЛЬ ВНУТРИКЛЕТОЧНЫХ КОЛЕБАНИЙ КАЛЬЦИЯ. АНАЛИЗ СИСТЕМЫ.


Введение

Ион Ca2+— один из важнейших вторичных мессенджеров в клетках: начиная от прокариотических клеток бактерий и заканчивая высокоспециализированными нейронами млекопитающих. Ион Ca2+ участвует в передаче сигналов в таких разнообразных процессах, как, например, апоптоз или слияние сперматозоида с яйцеклеткой (в этом случае ион Ca2+ запускает процессы роста и дифференцировки). На всех стадиях развития ион Ca2+ служит связующим звеном между самыми разнообразными внеклеточными сигналами и внутриклеточным ответом на них. Такую универсальность иона Ca2+ как посредника в передаче клеточных сигналов можно объяснить его постоянно поддерживаемой очень низкой концентрацией в цитоплазме (10-6 - 10-7М), что, в свою очередь, достигается путем закачки Ca2+ во внутриклеточные компартменты клетки – ЭР, митохондрии и в меньшей степени ядро. Так как концентрация Ca2+ относительно низкая, клетка отвечает заметными физиологическими и биохимическими реакциями уже на небольшие ее изменения, которые происходят в ответ на стимуляцию клетки, в том числе и гормональную.

Описание модели

 

Чтобы наглядно представить Ca-зависимые процессы, реализуемые в клетке при гормональной стимуляции, воспользуемся системой кинетических уравнений. Для минимальной модели мы будем оперировать двумя переменными. Концентрацию кальция в цитозоле имеет смысл брать как динамическую переменную, потому что ее чаще всего измеряют. Используемая нами модель предполагает существование двух внутриклеточных пулов, один из них чувствителен к инозитол-трифосфату, а другой – к концентрации Ca2+ (Рис. 1.)

 


 

Модель содержит две переменные:

S1 – концентрация кальция в цитозоле

S2 – концентрация кальция во внутриклеточных компартментах.

Введем в нашу модель скорости, формирующие баланс метаболитов S1 и S2(согласно схеме на Рис. 2.):

 

 
 

Рис. 2. Реализация внутриклеточного Ca2+

  1. Приток и отток цитозольного кальция через плазматическую мембрану обозначим, соответственно, скоростями v1 и v2.
  2. Гормонально (инозитол-три-фосфат IP3) активируемое высвобождение кальция из внутриклеточного пула, обозначим скоростью v3.
  3. Активный транспорт цитозольного кальция в гормон-не-чувствительный пул – v4.
  4. Ca2+-индуцированное высвобождения кальция - скоростью v5.

5. свободный отток кальция из гормон-не-чувствительного пула в цитозоль – скоростью v6.



Основой модели является следующая система дифференциальных уравнений:

 

Где положительными считаются потоки, входящие в цитозоль/пул, а отрицательными – выходящие из цитозоля/пула.

Скорость v1считается постоянной, так как внеклеточная концентрация Ca2+ значительно превышает цитозольную, а скорость v3 - постоянна, потому что гормон-чувствительное депо ЭР быстро заполняется кальцием. Таким образом мы можем объединить эти две скорости в одну v0=v1+v3. Тогда получим систему:

 

В стационарном состоянии:

 

В стационарном состоянии v0=v2 (концентрация цитозольного кальция не меняется). А значит:

 

Проведем линеаризацию системы (P и Q – правые части уравнений системы):

 
 


 

Очевидно, что скорости v2 и v4 зависят только от концентрации цитоплазматического кальция (S1) и не зависят от концентрации депонированного кальция (S2), а скорость v6 не зависит от концентрации цитоплазматического кальция, а зависит только от депонированного. Это и объясняет сокращение производных v2 и v4 по S2, а v6 по S1. При этом скорость v0 вообще определяется исключительно условиями эксперимента.

Таким образом, мы получаем:

 

 

Автоколебания в системе будут возникать только тогда, когда и меняет знак (существует предельный цикл). Чтобы сигма меняла знак, должно выполняться неравенство . А это означает, что поток v5 зависит от концентрации кальция в цитозоле, то есть существует кальций-индуцированное высвобождение кальция, положительная обратная связь.

Пусть скорости v2, v4, v6 пропорциональны концентрациям с коэффициентами пропорциональности соответственно k2, k4, k6. В таком случае:



Для скорости принимается следующая зависимость (кинетика Хилла):

В стационарном состоянии система примет вид:

 

Тогда выражения для дельты и сигмы имеют следующий вид:

 

 

Из данного соотношения видно, что дельта всегда является величиной положительной, а значения для бифуркации Хопфа можно вычислить, приравняв значение сигмы к нулю.

 

 

Анализ модели

 

В программе MS Excel мы создали таблицу, позволяющую задавать параметр v0 и вычислять значения концентрации ионов Ca2+ в цитозоле (S1), в гормон-нечувствительном депо (S2), скорость высвобождения Ca2+ из нечувствительного пула (v5) а также сигму, дельту и дискриминант.

Константы скоростей реакций были заимствованы из справочных материалов. На основании таблицы мы смогли построить зависимость следа (sp ≡ σ) и дискриминанта (det) от v0 (графики 1А, 1В)

График 1А. Зависимость следа матрицы коэффициентов линеаризованного уравнения и дискриминанта от v0

k2 = 1; k4 = 2; k5 = 1; k6 = 0,01; k0,5 = 3,1; n = 4

 

График 1В. (то же при тех же значения параметров, что и в графике 1, в диапазоне [0,79;1,01]).

Эти графики позволяют нам уточнить бифуркационную диаграмму (Рис. 3.), показывающую переходы системы из одного стационарного состояния в другое при соответствующих бифуркационных значениях. Устойчивость особой точки определяется знаком σ(sp): если σ > 0, то состояние неустойчиво; если <0, то устойчиво. При det > 0 наблюдается узел, а при det < 0 – фокус.

Рис. 3. Бифуркационная диаграмма

Таким образом мы определили значения v0 при которых меняется тип особой точки.

Далее в Trax были построены кинетические портреты при различных значениях v0. Время бралось достаточное для выхода на стационарное состояние (3000 или 2000). Рассмотрим получившиеся кинетические портреты:

 

 

№1. Устойчивый узел

1.а) Зависимость S1(t) при v0=0.5

1.б) Зависимость S2(t) при v0=0.5

1.в) Зависимость S1(t) и S2(t) при v0=0.5

Как мы видим, колебания в системе отсутствуют (видимо, приток кальция был недостаточен, чтобы их вызвать). Концентрация Ca2+в цитозоле и в ЭПР выходит на стационарное состояние. Концентрация Ca2+ в ЭПР значительно выше, чем в цитозоле, что особенно заметно при построении кинетических портретов в одном масштабе (Кин. Портрет 1.в.)

 

№2. Устойчивый фокус

2.а) Зависимость S1(t) при v0=0.865

2.б) Зависимость S2(t) при v0=0.865

2.в) Зависимость S1(t) и S2(t) при v0=0.865

При увеличении стимула колебания возникают, но их амплитуда очень небольшая и они очень быстро затухают, чтобы их заметить потребовалось существенно увеличить масштаб.

№3. Неустойчивый фокус

3.а) Зависимость S1(t) при v0=0.87

3.б) Зависимость S1(t) и S2(t) при v0=0.87

Здесь уже наблюдаются выраженные незатухающие колебания концентрации Ca2+ , причем максимум концентрации Ca2+в цитозоле соответствует минимуму концентрации в депо. Получается, что Ca2+при стимуляции выходит из депо в цитозоль. Этот выход осуществляется очень быстро, о чем нам говорит почти вертикальная прямая изменения концентрации на графиках, а вот возвращение кальция в депо происходит постепенно, что видно по быстрому, но все же не мгновенному возрастанию концентрации в депо (Кин. Портрет 3.б.). Возможно, это связано с тем, что в цитозоль транспорт идет по градиенту концентрации, а закачка в депо – против градиента посредством Ca2+ -АТФазы. То, как долго цитоплазматическая концентрация Ca2+ остается повышенной, определяет в мышцах длительность сокращения, обеспечивая циклическую активность поперечных мостиков филаментов. Концентрация Ca2+ в депо не падает до начального уровня, а периодически возвращается к несколько более высокому значению, чем то, которое было до стимуляции.

 

 

№4. Неустойчивый узел

4.а) Зависимость S1(t) при v0=1

4.б) Зависимость S1(t) и S2(t) при v0=1

Амплитуда колебания стала меньше, период колебаний также существенно уменьшился. Уменьшение периода колебаний, вероятно, связано с увеличением скоростей оттока кальция из цитозоля. V0 увеличивается, соответственно, S1` увеличивается, пропорционально увеличиваются v2 и v4. k2<k4, так что при более низких значениях v0, v2 не играла значительной роли, и отток происходил практически только в депо, а в данном случае уже наблюдается значительный отток кальция из клетки во внеклеточное пространство, так что концентрация кальция в цитозоле начинает уменьшаться раньше, чем увеличиваться в депо.

№5. Неустойчивый фокус

5.а) Зависимость S1(t) при v0=3.1


5.б) Зависимость S1(t) и S2(t) при v0=3.1

Если мы сравним этот фокус, с неустойчивым фокусом, полученным при v0=0.87, то заметим, что амплитуда и период колебаний значительно уменьшились, возможные причины этого такие же, как и в пункте №4.

№6. Устойчивый фокус

6.а) Зависимость S1(t) и S2(t) при v0=3.5

6.б) Зависимость S1(t) и S2(t) при v0=3.5 (в увеличенном масштабе)

Колебания еле заметны и быстро затухают. Стимул был слишком сильным. (Быстро затухающие колебания скорее всего защищают клетку от неадекватных стимулов).

 

 

№7. Устойчивый узел

7.а) Зависимость S1(t) и S2(t) при v0=4.5

7.б) Зависимость S1(t) и S2(t) при v0=4.5 (в увеличенном масштабе)

Колебаний в системе не наблюдается. Такие высокие дозы кальция могут быть опасны для клетки

Итак, из данных кинетических портретов видно, что при v0 (0; 0.838) система находится в бесколебательном режиме; при v0 (0.838; 0.868) в системе наблюдаются затухающие колебания, а при v0 (0,868; 3.25) – автоколебательный режим, который снова переходит в затухающие колебания в интервале v0 (3,25; +∞).

 

 

Далее для этих значений v0 мы построили фазовые портреты. Получившиеся фазовые портреты выглядят следующим образом:

Зависимость S2 от S1:

№1. Устойчивый узел при v0=0.5

Таким образом, отсутствие колебаний при данном стимуле подтверждается отсутствием предельного цикла на фазовом портрете.

 

№2. Устойчивый фокус при v0=0.865

При данном v0 предельный цикл неустойчив. Он показывает границу областей начальных условий. При начальных условиях, лежащих внутри предельного цикла получается затухающий переходный процесс (фазовые траектории незамкнуты), а если начальные условия лежат снаружи – расходящийся переходный процесс. Колебаний не возникает.

 

№3. Предельные циклы

а) при v0=0.87

б) при v0=1

в) при v0=3.1

В этом диапазоне значений v0 существуют предельные циклы – замнкутые траектории, соответствующие периодическим процессам. Физический смысл устойчивого предельного цилка – автоколебания системы. То есть при таких v0 существуют автоколебания. При определенном низком значении S1 не наблюдается положительной обратной связи, и кальций просто уходит в депо. Потом с какого-то определенного момента начинается кальций индуцированное высвобождение кальция, S1 растет, S2 уменьшается и происходят колебания.

№4. Устойчивый фокус при v0=3.5

 

№5. Устойчивый узел при v0=4.5

Предельного цикла ни в №4, ни в №5 нет, как и автоколебаний в системе. В устойчивом фокусе можно наблюдать начальные колебания с небольшой амплитудой, но они быстро затухают. При устойчивом узле колебаний нет вовсе, любые концентрации приходят к стационарному состоянию, более высокому, чем при устойчивом узле, когда v0=0.5

*Помимо этого мы еще успели дополнительно рассмотреть жесткое рождение предельного цикла:

и бесконечно затухающий фокус:

Выводы

 

1) Автоколебания в системе существуют при наличии положительной обратной связи между потоком Ca2+ из гормон-не-чувствительного пула и концентрацией Ca2+ в цитозоле.

2) Концентрации Ca2+ в цитозоле и в пуле нелинейно зависят от потока Ca2+ извне.

3) При значении стимула менее 0.85 колебаний Ca2+ не происходит.

4) При стимуле 0.838<v0<0.868 колебания возникают, но быстро затухают.

5) При значении стимула 0.868<v0<3.25 возникают колебания. На фазовой плоскости им соответствует устойчивый предельный цикл. В этом же диапазоне при увеличении силы стимула амплитуда и период колебаний уменьшаются.

6) При стимуле v0>3.25 автоколебаний не возникает.

 

 

7) Ниже критического значения стимула система находится в устойчивом состоянии. В диапазоне 0.868<v0<3.25 - в неустойчивом - существуют автоколебания, фазовый портрет представляет собой устойчивый предельный цикл. Выше определенного параметра автоколебания исчезают и система переходит в новое устойчивое состояние, отвечающее более высокой концентрации кальция в цитозоле.

Итак, при анализе данной модели был выявлен диапазон силы стимула, в котором наша система имеет автоколебалельный характер. Помимо этого мы описали различные возможные состояния системы, что хорошо согласуется с другими работами.

 

Список литературы

[1] Эккерт Р., Рэндалл Д., Огастин Д. // Физиология животных: механизмы и адаптации. Том 1. М.: Мир, 1991. 424c. 344c

[2] Л.Д. Тёрлова, Н.Е. Беляева, П.В. Фурсова, Г.Ю. Ризниченко. Модель внутриклеточных колебаний кальция.

[3] Goldbetert, A., Dupontt, G., Oscillations and Waves of Cytosolic Calcium: Insights from Theoretical Models

[4] Н.Б. Гусев. Ca-связывающие белки. Часть 1. Классификация и строение // Соросовский Образовательный Журнал. 1998. No 5. 2-9.

 

 


Дата добавления: 2015-08-29; просмотров: 107 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Налог на прибыль — прямой налог, взимаемый с прибыли организации (предприятия, банка, страховой компании и т. д.). Прибыль для целей данного налога, как правило, определяется как доход от | 1. Позиционирование рынка

mybiblioteka.su - 2015-2024 год. (0.026 сек.)