Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1. Общие принципы и общее описание интерфейса



1. Общие принципы и общее описание интерфейса

 

В настоящее время самой быстрой универсальной шиной расширения является PCI, имеющая при тактовой частоте 66 МГц и разрядности 32 бит пиковую пропускную способность 264 Мбайт/с. Одним из главных потребителей пропускной способности шины является графический адаптер. По мере увеличения разрешения и глубины цвета требования к пропускной способности шины, связывающей дисплейный адаптер с памятью и центральным процессором компьютера, повышаются. Одно из решений состоит в уменьшении потока графических данных, передаваемых по шине. Для этого графические платы снабжают ускорителями и увеличивают объем видеопамяти, которой пользуется ускоритель при выполнении построений. В результате поток данных в основном циркулирует внутри графической карты, слабо нагружая внешнюю шину. Однако при трехмерных построениях ускорителю становится тесно в ограниченном объеме локальной памяти графи­ческого адаптера, и его поток данных снова «выплескивается» на внешнюю шину.

Фирма Intel на базе шины PCI 2.1 разработала стандарт подключения графических адаптеров — AGP (Accelerated Graphic Port — ускоренный графический порт). Первая версия стандарта вышла в 1996 году, в настоящее время действует версия 2.0 (1998 года), отличающаяся от первой в основном введением нового режима передачи 4х. В конце 2000 г. Intel опубликовала проект спецификации AGP8X, которая рассматривается как отдельная спецификация, а не просто развитие предыдущих.

Отличительные особенности интерфейса AGP от ее предшественницы, шины PCI:

♦ работа на тактовой частоте 66 МГц;

♦ увеличенная пропускная способность;

♦ режим работы с памятью DMA и DME;

♦ разделение запросов на операцию и передачу данных;

♦ возможность использования видеокарт с большим энергопотреблением, нежели PCI.

Порт AGP представляет собой 32-разрядную шину с тактовой частотой 66 МГц, большая часть сигналов позаимствована из шины PCI. Однако в отличие от PCI, порт AGP представляет собой двухточечный интерфейс, соединяющий графический адаптер с памятью и системной шиной процессора напрямую логикой и каналами данных чипсета системной платы, не пересекаясь с «узким местом» — шиной PCI. Поначалу планировался переход на тактовую частоту 100 МГц, но и в спецификации AGP 2.0, и в предлагаемом варианте AGP8X фигурирует лишь одна частота — 66,6 МГц (нынешний предел и для шины PCI). «Ускоренность» порта обеспечивается следующими факторами:



♦ конвейеризацией обращений к памяти;

♦ удвоенной (2х) или учетверенной (4х) частотой передачи данных (относительно тактовой частоты порта);

♦ демультиплексированием шин адреса и данных.

Идею конвейеризации обращений к памяти иллюстрирует рисунок 1, где сравниваются обращения к памяти PCI и AGP. В PCI во время реакции памяти на запрос шина простаивает (но не свободна). Конвейерный доступ AGP позволяет в это время передавать следующие запросы, а потом получить поток ответов.

 

Рисунок 1. Циклы обращения к памяти PCI и AGP

Удвоение и учетверение частоты передачи данных обеспечивает при частоте 66 МГц пропускную способность до 533 (2х) и 1066 Мбайт/с (4х), что для 32-битной шины несколько неожиданно. В этих режимах блоки данных передаются как по фронту, так и по спаду стробирующего сигнала (как в ATA Ultra DMA). Режимы 2х и 4х могут использоваться, лишь если их поддерживают и графический адаптер, и системная плата.

Демультиплексирование (разделение) шины адреса и данных сделано несколько необычным образом. С целью экономии числа интерфейсных линий шину адреса и команды в демультиплексированном режиме AGP представляют всего 8 линий SBA (SideBand Address), по которым команда, адрес и значение длины передачи передаются последовательно за несколько тактов. Поддержка демультиплексированной адресации не является обязательной для устройства AGP, поскольку имеется альтернативный способ подачи адреса по шине AD.

Порт AGP предназначен только для интеллектуального графического адаптера, имеющего SD-ускоритель (для краткости здесь этот адаптер будем называть просто ускорителем). Системная логика порта AGP отличается сложным контроллером памяти, который выполняет глубокую буферизацию и высокопроизводительное обслуживание запросов AGP (от адаптера) и других своих клиентов — центрального процессора (одного или нескольких) и шины PCI. AGP может реализовать всю пропускную способность 64-битной системы памяти компьютера на процессорах Pentium и выше. При этом возможны конкурирующие обращения к памяти как со стороны процессора, так и со стороны мостов шин PCI. Фирма Intel ввела поддержку AGP в чипсеты для процессоров Р6, однако нет «противопоказаний» для применения AGP и с Pentium.

Отметим, что многие преимущества AGP носят потенциальный характер и могут быть реализованы лишь при поддержке аппаратных средств графического адаптера и ПО. Графический адаптер с интерфейсом AGP может реально вести себя по-разному:

♦ не задействовать конвейеризацию, а использовать только быструю запись PCI (Fast Write);

♦ не работать с текстурами, расположенными в системной памяти, но использовать более быстрый обмен данными между памятью и локальным буфером;

♦ использовать оптимальное распределение текстур между локальной и системной памятью, избегая конфликтов с обращениями к памяти от процессора.

 


2. Особенности процесса передачи данных по интерфейсу

 

Порт AGP содержит практически полный набор сигналов шины PCI и дополнительные сигналы AGP. Устройство, подключаемое к порту AGP, может предназначаться как исключительно для операций AGP, так и быть комбинацией AGP+PCI. Устройство обязательно должно выполнять функции ведущего устройства AGP (иначе порт AGP для него теряет смысл) и функции ведомого устройства PCI со всеми его атрибутами (конфигурационными регистрами и т. п.); дополнительно оно может быть и ведущим устройством PCI. Для транзакций в режиме AGP ему доступно только системное ОЗУ. В режиме PCI обращения возможны как к пространству памяти, так и к пространству ввода-вывода и конфигурационному пространству.

Транзакции в режиме PCI, инициируемые ускорителем, начинаются с подачи сигнала FRAME* и выполняются обычным для PCI способом. Заметим, что при этом на все время транзакции шина AD занята, причем транзакции чтения памяти занимают шину на большее число тактов, чем транзакции записи, — после подачи адреса неизбежны такты ожидания на время доступа к памяти. Запись на шине происходит быстрее — данные записи задатчик посылает сразу за адресом, а на время доступа к памяти они «оседают» в буфере контроллера памяти. Контроллер памяти позволяет завершить транзакцию и освободить шину до физической записи в память. Обращения со стороны процессора (или задатчиков шины PCI) отрабатываются адаптером так же, как обычным устройством PCI.

Конвейерные транзакции AGP (команды AGP) инициируются только ускорителем; логикой AGP они ставятся в очереди на обслуживание и исполняются в зависимости от приоритета, порядка поступления запросов и готовности данных. Эти транзакции могут быть адресованы ускорителем только к системному ОЗУ. Если устройству AGP требуется обратиться к локальной памяти каких-либо устройств PCI, то оно должно выполнять эти транзакции в режиме PCI. Транзакции, адресованные к устройству AGP, отрабатываются им как ведомым устройством PCI, однако имеется возможность быстрой записи в локальную память FWXFast Write), в которой данные передаются на скорости AGP (2х или 4х), и управление потоком их передач ближе к протоколу AGP, нежели PCI. Транзакции FW обычно ини­циируются процессором и предназначены для принудительного «заталкивания» данных в локальную память ускорителя.

Концепцию конвейера AGP иллюстрирует рисунок 2. Порт AGP может находиться в одном из четырех состояний:

IDLE — покой;

DATA — передача данных конвейеризированных транзакций;

AGP — постановка в очередь команды AGP;

PCI — выполнение транзакции в режиме PCI.

Рисунок 2. Конвейер AGP

Из состояния покоя IDLE порт может вывести запрос транзакции PCI (как от ускорителя, так и с системной стороны) или запрос AGP (только от ускорителя). В состоянии PCI транзакция PCI выполняется целиком, от подачи адреса и команды до завершения передачи данных. В состоянии AGP ведущее устройство передает только команду и адрес для транзакции (по сигналу PIPE* или через порт SBA), ставящейся в очередь; несколько запросов могут следовать сразу друг за другом. В состояние DATA порт переходит, когда у него в очереди имеется необслуженная команда, готовая к исполнению. В этом состоянии происходит передача данных для команд, стоящих в очереди. Это состояние может прерываться запросами PCI (для выполнения целой транзакции) или AGP (для постановки в очередь новой команды), но прерывание возможно только на границах данных транзакций AGP. Когда порт AGP обслужит все команды, он снова переходит в состояние покоя. Все переходы происходят под управлением арбитра порта AGP, реагирующего на поступающие запросы (REQ# от ускорителя и внешние обращения от процессора или других устройств PCI) и ответы контроллера памяти. Транзакции AGP некоторыми моментами отличаются от транзакций PCI.

♦ Фаза данных отделена от фазы адреса, чем и обеспечивается конвейеризация.

♦ Используется собственный набор команд.

♦ Транзакции адресуются только к системной памяти, используя то же пространство физических адресов, что и PCI. Транзакции могут иметь длину, кратную 8 байтам, и начинаться только по 8-байтной границе. Транзакции чтения иного размера должны выполняться только в режиме PCI; транзакции записи могут использовать сигналы С/ВЕ[3:0]# для маскирования лишних байтов.

♦ Длина транзакции явно указывается в запросе.

♦ Конвейерные запросы не гарантируют когерентность памяти и кэша. Для операций, требующих когерентности, должны использоваться транзакции PCI.

 

 


3. Физический и электрический принципы функционирования интерфейса

 

Возможны два способа подачи команд AGP (постановки запросов в очередь), из которых в текущей конфигурации выбирается один, причем изменение способа «на ходу» не допускается.

♦ Запросы вводятся по шине AD[31:0] и С/ВЕ[3:0] с помощью сигнала PIPE#, по каждому фронту CLK ведущее устройство передает очередное двойное слово запроса вместе с кодом команды.

♦ Команды подаются через внеполосные (sideband) линии адреса SBA[7:0]. «Внеполосность» означает, что эти сигналы используются независимо от занятости шины AD. Синхронизация подачи запросов зависит от режима (1х, 2х или 4х).

При подаче команд по шине AD во время активности сигнала PIPE* код команды AGP (СССС) кодируется сигналами С/ВЕ[3:0], при этом на шине AD помещается начальный адрес (на AD[31:3]) и длина n (на AD[2:0]) запрашиваемого блока данных. Определены следующие команды:

♦ 0000 (Read) — чтение из памяти (n+1) учетверенных слов (по 8 байт) данных, начиная с указанного адреса;

♦ 0001 (HP Read) — чтение с высоким приоритетом;

♦ 0100 (Write) — запись в память;

♦ 0101 (HP Write) — запись с высоким приоритетом;

♦ 1000 (Long Read) — «длинное» чтение (n+1)х4 учетверенных слов (до 256 байт данных);

♦ 1001 (HP Long Read) — «длинное» чтение с высоким приоритетом;

♦ 1010 (Flush) — очистка, выгрузка данных всех предыдущих команд записи по адресам назначения (на порте AGP выглядит как чтение, возвращающее произвольное учетверенное слово в качестве подтверждения исполнения; адрес и длина, указанные в запросе, значения не имеют);

♦ 1100 (Fence) — установка «ограждений», позволяющих низкоприоритетному потоку записей не пропускать чтения;

♦ 1101 (Dual Address Cycle, DAC) — двухадресный цикл для 64-битной адресации: в первом такте по AD передается младшая часть адреса и длина запроса, а во втором — старшая часть адреса (по AD) и код исполняемой команды (по С/ВЕ[3:0]).

При внеполосной подаче команд по шине SBA[7:0] передаются 16-битные посылки четырех типов. Каждая посылка передается за два приема, по фронту и спаду синхросигнала. Тип посылки кодируется старшими битами:

♦ тип 1: ОААА АААА АААА ALLL — поле длины (LLL) и младшие биты адреса (А[14:03]);

♦ тип 2:10СС CCRA АААА АААА — код команды (СССС) и средние биты адреса (А[23:15]);

♦ тип 3: 110R АААА АААА АААА — старшие биты адреса (А[35:24]);

♦ тип 4:1110 АААА АААА АААА — дополнительные старшие биты адреса, если требуется 64-битная адресация.

Посылка из всех единиц является пустой командой (NOP); они посылаются в покое шины SBA. Биты «R» зарезервированы. Посылки типов 2,3 и 4 являются «липкими» (sticky) — значения, ими определяемые, сохраняются до введения новой посылки того же типа. Постановку команды в очередь инициирует посылка типа 1, задающая длину транзакции и ее младшие адреса, — код команды и остальная часть адреса должны быть определены ранее введенными посылками типов 2-4. Такой способ очень экономно использует такты шины для подачи команд при пересылках массивов. Синхронизация данных на SBA зависит от режима порта.

♦ В режиме 1х каждая часть передается по фронту CLK; начало посылки (старшая часть) определяется по получению байта, отличного от 11111111b, по последующему фронту передается младшая часть. Очередная команда может вводиться за каждую пару тактов CLK (когда код команды и старший адрес уже введены).

♦ В режиме 2х для SBA используется отдельный строб SB_STB, по его спаду передается старшая часть, а по последующему фронту — младшая. Частота этого строба (но не фаза) совпадает с CLK, так что очередная команда может вводиться в каждом такте CLK.

♦ В режиме 4х используется еще и дополнительный (инверсный) строб SB_STB#.Старшая часть фиксируется по спаду SB_STB, а младшая — по последующему спаду SB_STB#. Частота стробов в два раза выше, чем CLK, так что в каждом такте CLK может вводиться пара команд.

Конечно, полный цикл введения команд (с посылками всех четырех типов) с учетом посылки NOP оказывается больше — 10, 5 и 2,5 тактов частоты CLK для режимов 1х, 2х и 4х соответственно.

В ответ на полученные команды порт AGP выполняет передачи данных, причем фаза данных AGP явно не привязана к фазе команды/адреса. Фазы данных вводит порт AGP (системная логика), исходя из порядка ранее пришедших к нему команд от ускорителя.

Передачи данных AGP выполняются, когда шина находится в состоянии DATA. Как говорилось выше, фаза данных AGP явно не привязана к фазе команды/адреса. Фазы данных вводит порт AGP (системная логика), исходя из порядка ранее пришедших к нему команд от ускорителя. Ускоритель узнает о назначении шины AD в последующей транзакции по сигналам ST[2:0] (действительны только во время сигнала GNT#, коды 100-110 зарезервированы):

♦ 000 — ведущему устройству будут передаваться данные низкоприоритетного запроса чтения, ранее поставленного в очередь (или выполняется очистка);

♦ 001 — ведущему устройству будут передаваться данные высокоприоритетного запроса чтения;

♦ 010 — ведущее устройство должно будет предоставлять данные низкоприори­тетного запроса записи;

♦ 011 — ведущее устройство должно будет предоставлять данные высокоприоритетного запроса записи;

♦ 111 — ведущему устройству разрешается поставить в очередь команду AGP (сигналом Р1РЕ#) или начать транзакцию PCI (сигналом FRAME*).

Ускоритель узнает лишь тип и приоритет команды, результаты которой последуют в данной транзакции. Какую именно команду из очереди отрабатывает порт, ускоритель определяет сам, так как именно он ставил их в очередь (ему известен порядок). Никаких тегов транзакций (как, например, в системной шине процессоров Р6) в интерфейсе AGP нет. Имеется только 4 независимых очереди для каждого типа команд (чтение низкоприоритетное, чтение высокоприоритетное, запись низкоприоритетная, запись высокоприоритетная). Фазы исполнения команд разных очередей могут чередоваться произвольным образом; порт имеет право исполнять их в порядке, оптимальном с точки зрения производительности. Реальный порядок исполнения команд (чтения и записи памяти) тоже может изменяться. Однако для каждой очереди порядок выполнения всегда совпадает с порядком подачи команд (об этом знают и ускоритель, и порт).

Запросы AGP с высоким приоритетом для арбитра системной логики являются более приоритетными, чем запросы от центрального процессора и ведущих устройств шины PCI. Запросы AGP с низким приоритетом для арбитра имеют приоритет ниже, чем от процессора, но выше, чем от остальных ведущих устройств. Хотя принятый протокол никак явно не ограничивает глубину очередей, спецификация AGP формально ее ограничивает до 256 запросов. На этапе конфигурирования устройства система PnP устанавливает реальное ограничение (в конфигурационном регистре ускорителя) в соответствии с его возможностями и возможностями системной платы. Программы, работающие с ускорителем (исполняемые и локальным, и центральным процессорами), не должны допускать превышения числа необслуженных команд в очереди (у них для этого имеется вся необходимая информация).

При передаче данных AGP управляющие сигналы, заимствованные от PCI, имеют почти такое же назначение, что и в PCI. Передача данных AGP в режиме 1х очень похожа на циклы PCI, но немного упрощена процедура квитирования (поскольку это выделенный порт и обмен выполняется только с быстрым контроллером системной памяти). В режимах 2х и 4х имеется специфика стробирования.

В режиме 1х данные (4 байта на AD[31:0]) фиксируются получателем по положительному перепаду каждого такта CLK, что обеспечивает пиковую пропускную способность 66,6 х 4 = 266 Мбайт/с.

В режиме 2х используются стробы данных AD_STBO и AD_STB1 для линий AD[0:15] и AD [16:31] соответственно. Стробы формируются источником данных, приемник фиксирует данные и по спаду, и по фронту строба. Частота стробов совпадает с частотой CLK, что и обеспечивает пиковую пропускную способ­ность 66,6 х 2 х 4 = 533 Мбайт/с.

В режиме 4х используются еще и дополнительные (инверсные) стробы AD_STBO# и AD_STB1#. Данные фиксируются по спадам и прямых, и инверсных стробов. Частота стробов в два раза выше, чем CLK, что и обеспечивает пиковую пропускную способность 66,6 х 2 х 2 х 4 = 1066 Мбайт/с.

Порт AGP должен отслеживать состояние готовности буферов ускорителя к посылке или получению данных транзакций, поставленных в очередь. Сигналом RBF# (Read Buffer Full) ускоритель может информировать порт о неготовности к приему данных низкоприоритетных транзакций чтения (к приему высокоприоритетных он должен быть всегда готов). Сигналом WBF# (Write Buffer Full) он информирует о неспособности принять первую порцию данных быстрой записи (Fast Write, FW).

Конфигурирование устройств с интерфейсом AGP выполняется так же, как и обычных устройств PCI, — через обращения к регистрам конфигурационного пространства. При этом AGP-устройства не требуют внешней линии IDSEL — у них внутренний сигнал разрешения доступа к конфигурационным регистрам соединен с линией AD16, так что обращение к конфигурационным регистрам AGP обеспечивается при AD16=1.

В процессе инициализации процедура POST только распределяет системные ресурсы, но операции AGP оставляет запрещенными. Работу AGP разрешает загруженная ОС, предварительно установив требуемые параметры AGP: режим обмена, поддержку быстрой записи, адресации свыше 4 Гбайт, способ подачи и допустимое число запросов. Для этого параметры устройств считываются из регистра состояния AGP, а согласованные параметры записываются в регистр команд AGP, расположенный в конфигурационном пространстве. Параметры настройки порта зада­ются через конфигурационные регистры чипсета системной платы (главного моста).

Регистр состояния AGP сообщает свойства порта: допустимое число запросов в очередях, поддержку внеполосной адресации, быстрой записи, адресации свы­ше 4 Гбайт, режимы 1х, 2х, 4х. В конфигурационном пространстве устройства AGP регистр, на который указывает CAP_PTR, содержит CAP_ID=02 (биты [7:0]) и но­мер версии спецификации AGP (биты [23:20] — старшая цифра, биты [19:16] — младшая).

Регистр состояния AGP (адрес CAP_PTR+4) содержит следующие поля:

♦ биты [31:24] — RQ, допустимое суммарное число запросов, находящихся в оче­редях: 0 — 1 команда, 255 — 256 команд;

♦ биты [23:10] - резерв (0);

♦ бит 9 — SB A, поддержка внеполосной подачи команд;

♦ биты [8:6] — резерв (0);

♦ бит 5 — 4G, поддержка адресации памяти свыше 4 Гбайт;

♦ бит 4 — FW, поддержка быстрой записи;

♦ биты 3 — резерв (0);

♦ биты [2:0] — RATE, поддерживаемые режимы обмена по AD и SBA: бит 0 — 1х, бит 1 — 2х, бит 2 — 4х.

Регистр команд AGP служит для разрешения этих свойств. Регистр команд AGP (адрес CAP_PTR+8) содержит следующие поля:

♦ биты [31:24] — RQ_DEPTH, глубина очереди команд;

♦ биты [23:10] - резерв (0);

♦ бит 9 — 5BA_ENABLE, установка внеполосной подачи команд;

♦ бит 8 — AGP_ENABLE, разрешение операций AGP;

♦ биты [7:6] — резерв (0);

♦ бит 5 — 4G, разрешение адресации памяти свыше 4 Гбайт (двухадресных циклов и посылок 4-го типа по SBA);

♦ бит 4 — FW_Enable, разрешение быстрой записи;

♦ биты 3 — резерв (0);

♦ биты [2:0] — DATA_RATE, установка режима обмена: бит 0 — 1х, бит 1 — 2х, бит 2 — 4х (должен быть установлен лишь один бит).

Графический адаптер с интерфейсом AGP может быть встроен в системную пла­ту, а может располагаться и на карте расширения, установленной в слот AGP. Внешне карты с портом AGP похожи на PCI (рисунок 3), но у них используется разъем повышенной плотности с «двухэтажным» (как у EISA) расположением ламелей. Сам разъем находится дальше от задней кромки платы, чем разъем PCI.

Порт AGP может использовать два возможных номинала питания интерфейсных схем: 3,3 В и 1,5 В (уровни сигналов RST# и CLK всегда равны 3,3 В). Снижение напряжения питания буферных схем позволяет повысить достижимую частоту пе­реключений. Для режимов 1х и 2х может использоваться любой из номиналов питания буферов, для режима 4х — только 1,5 В. Для работы в режимах 2х и 4х приемникам требуется опорное напряжение Vref. Его номинал для 3,3 В составляет 0,4xVddq, для 1,5 В — 0,5xVddq. Опорное напряжение для приемников генерирует­ся на стороне передатчиков. На контакт А66 (Vrefgc) графическое устройство подает сигнал для порта, на контакт В66 (Vrefcg) порт (чипсет) подает напряже­ние для устройства AGP.

Рисунок 3. Слоты AGP: а — 3,3 В,б—1,5В,в — универсальные

По уровню питания буферов карты и порты AGP могут быть трех типов: 3,3 В, 1,5 В и универсальные, причем имеются механические ключи, предотвращающие ошибочные подключения. Слот и карта 3,3 В имеют ключи на месте контактов 22-25 (перегородка в слоте, см. рисунок 3, а, вырез на разъеме карты); слот и карта 1,5 В — на месте контактов 42-45. Универсальный слот не имеет перегородок, а универсальная карта имеет оба выреза. Универсальная системная плата узна­ет о номинале питания буферов установленной карты по сигналу TYPEDET* — на картах 3,3 В контакт свободен, на картах 1,5 В и универсальных — заземлен. Уни­версальная карта узнает о номинале питания буферов по уровню напряжения на контактах Vddq (3,3 или 1,5 В). Таким образом и обеспечивается согласование.

Назначение контактов слота AGP приведено в таблице 1, в позициях ключей через дробь указано назначение для карт 3,3/1,5 В. На универсальном слоте присут­ствуют все эти цепи, на универсальных картах все цепи, назначенные ключам, от­сутствуют. Из-за двух ключей на универсальной карте теряется пара контактов для подачи питания VCC3.3, и их остается только 4, что ограничивает потребля­емый ток (допустимый ток для каждого контакта — 1 А). На универсальной карте также нет дополнительного питания 3,3Vaux, используемого для питания цепей формирования сигнала РМЕ# в режиме «сна».


Таблица 1. Сигналы порта AGP

РядА

Ряд В

РядА

Ряд В

Spare

 

12V

Vddq3.3

 

Vddq3.3

5.0V

 

Spare

AD21

 

AD22

5.0V

 

Reserved

AD19

 

AD20

USB+

 

USB-

GND

 

GND

GND

 

GND

AD17

 

AD18

INTB#

 

1NTA#

C/BE2#

 

AD16

CLK

 

RST#

Vddq3.3

 

Vddq3.3

REQ#

 

GNT#

IRDY#

 

FRAME*

VCC3.3

 

VCC3.3

 

 

 

STO

 

ST1

GND

 

GND

ST2

 

Reserved

 

 

 

RBF#

 

PiPE#

VCC3.3

 

VCC3.3

GND

 

GND

DEVSEL*

 

TRDY#

Spare

 

Spare

Vddq3.3

 

STOP#

SBAO

 

SBA1

PERR#

 

Spare

VCC3.3

 

VCC3.3

GND

 

GND

SBA2

 

SBA3

SERR#

 

PAR

SB STB

 

Reserved

C/BE1#

 

AD 15

GND

 

GND

Vddq3.3

 

Vddq3.3

SBA4

 

SBA5

AD14

 

AD13

SBA6

 

SBA7

AD12

 

AD11

KEY

 

KEY

GND

 

GND

KEY

 

KEY

AD10

 

AD9

KEY

 

KEY

AD8

 

C/BE0#

KEY

 

KEY

Vddq3.3

 

Vddq3.3

AD31

 

AD30

AD STB0

 

Reserved

AD29

 

AD28

AD7

 

AD6

VCC3.3

 

VCC3.3

GND

 

GND

AD27

 

AD26

AD5

 

AD4

AD25

 

AD24

AD3

 

AD2

GND

 

GND

Vddq3.3

 

Vddq3.3

AD STB1

 

Reserved

AD1

 

ADO

AD23

 

C/BE3#

SMBO

 

SMB1

 

Кроме собственно AGP, в порте AGP заложены сигналы шины USB, которую предполагается заводить в монитор (линии USB+, USB- и сигнал OVRCNT*, которым сообщается о перегрузке по току линии питания +5 В, выводимой в монитор).

Сигнал РМЕ# относится к интерфейсу управления энергопотреблением (Power Management Interface). При наличии дополнительного питания 3,3Vaux этим сиг­налом карта может инициировать «пробуждение».

Спецификация AGP Pro описывает более мощный коннектор, позволяющий в 4 раза повысить мощность, подводимую к графической карте. При этом сохраняется одно­сторонняя совместимость: карты AGP могут устанавливаться в слот AGP Pro, но не наоборот. Коннектор AGP Pro имеет дополнительные контакты с обеих сторон обычного коннектора AGP (рисунок 4) для линий GND и питания 3,3 и 12 В. Для правильной установки обычной карты со стороны задней кромки системной платы дополнительная часть слота AGP Pro закрывается съемной пластмассовой заглушкой. Карта AGP Pro может также использовать 1-2 соседних слота PCI: чисто механически (как точки опоры и место), как дополнительные коннекторы для подачи питания, как функциональные коннекторы PCI.

Рисунок 4. Коннектор карты AGP Pro (показан ключ питания карты 1,5 В): а—вид сверху, б — профиль ключей

В совокупности карта AGP Pro может потреблять до 110 Вт мощности, забирая ее по шинам питания 3,3 В (до 7,6 А) и 12 В (до 9,2 А) с основного разъема AGP, до­полнительного разъема питания AGP Pro и одного-двух разъемов PCI. Карты AGP Pro большой мощности (High Power, 50-110 Вт) занимают 2 слота PCI, малой (Low Power, 25-50 Вт) — 1 слот. Соответственно скобка крепления к задней пане­ли ПК у них имеет утроенную или удвоенную ширину. Кроме того, карты имеют крепеж к передней стенке ПК. На дополнительном разъеме цепь PRSNT1 # служит признаком наличия карты (контакт заземлен), a PRSNT2* — признаком потреб­ляемой мощности (до 50 Вт — контакт свободен, до 110 Вт — заземлен).

В спецификации AGP8X предполагаются следующие основные отличия:

♦ введен новый режим передачи по шинам AD и SBA — 8х, обеспечивающий пиковую производительность 2,132 Гбайт/с;

♦ исключены команды длинного чтения и записи;

♦ исключены команды высокого приоритета (и упразднены сами понятия низкого и высокого приоритета);

♦ исключена возможность подачи команд с помощью сигнала Р1РЕ#;

♦ предпринимаются меры по обеспечению когерентности при обращениях к па­мяти, не лежащей в области GART;

♦ несколько изменены протоколы передачи данных, применяется динамическое инвертирование шины данных для минимизации переключений.

Дополнительно предполагается введение поддержки изохронных передач; воз­можность установки нескольких портов AGP; возможность поддержки разных размеров страниц, описанных в GART; обеспечение когерентности при обраще­ниях к определенным страницам.

 


4. Настройка интерфейса AGP через BIOS

 

Перед любым пользователем персонального компьютера рано или поздно встает задача оптимизации настроек BIOS SETUP. Это могут быть как простая смена загрузочного диска, выполняемая, например, чтобы загрузиться с дискеты, так и тонкая подстройка режимов функционирования оперативной памяти, шин, чипсета, осуществляемая для обеспечения максимальной производительности компьютера. И если, скажем, новый загрузочный диск указать достаточно просто, то установка параметров BIOS Setup Обеспечивающих максимальную производительность, - задача далеко не тривиальная. Если не ориентироваться во всех тонкостях взаимодействия отдельных компонентов компьютера и иметь представления о назначении тех или иных опций BIOS Setup, то беспорядочное изменение параметров не только не приведет к увеличению скорости работы (скорее уж наоборот),но и может вызвать временную неработоспособность компьютера. В рамках данной работы мы рассмотрим следующие настройки BIOS

Chipset Feature Setup

AGP Aperture Size (MB)

AGP 2X Mode

AGP Master 1WS Read

AGP Master 1WS Write

AGP 4X Mode

AGP Driving Control

AGP Driving Value

Integrated Peripherals

Init Display First

 

4.1 AGP Aperture Size MB (Размер апертуры AGP Mб)

Опции: 4, 8, 16, 32, 64, 128, 256

Данная опция выбирает размер апертуры AGP. Апертура - часть диапазона адреса памяти PCI (memory address range) отведенная под пространство адреса графической памяти. Ведущие циклы которые подпадают под этот диапазон апертуры пересылаются к AGP без необходимости трансляции. Данный размер также устанавливает максимальный размер системной RAM отведенной графической карточке для хранения текстур. Размер апертуры AGP устанавливает следующая формула: максимально используемая AGP память x2 плюс 12MB. Это значит что размер используемой памяти AGP составляет менее половины размера апертуры AGP. Это из-за того, что система требует не кэшированную память AGP плюс равное количество области памяти для комбинированной записи и дополнительные 12MB для виртуальной адресации. Это адресное пространство, а не используемая физическая память. Физическая память размещается и высвобождается по необходимости только когда Direct3D запрашивает ("create non-local surface") запрос.Win95 (с VGARTD.VXD) и Win98 используют "эффект водопада" ("waterfall effect"). Поверхности сначала создаются в локальной памяти. Когда эта память заполнена, процесс создания поверхности вытекает в AGP память и затем в системную память. Таким образом, использование памяти автоматически оптимизируется для каждого приложения. Память AGP и системная память не используются без абсолютно крайней необходимости. Размер апертуры не соответствует производительности, поэтому увеличивая его до огромных пропорций, мы не улучшим производительность. Многие графические карты, однако, потребуют размера апертуры более чем 8MB AGP для нормальной работы, так что следует устанавливать размер апертуры AGP минимум 16MB. Даже тогда, вам следует устанавливать завышенный размер апертуры, чтобы он был достаточно большим для соответствия требованиям графики предъявляемым вашими играми и приложениями. В настоящее время, практическим правилом считается иметь размер апертуры AGP от 64MB до 128MB. Превышая 128MB мы не ухудшим производительность, но все равно лучше придерживаться 64MB-128MB чтобы GART (Graphics Address Relocation Table) не был слишком большой. При увеличении устанавливаемого RAM и практики сжатия текстур, становится меньше нужды в размере апертуры AGP превышающем 64MB. Так что мы рекомендуем вам устанавливать AGP Aperture Size на 64MB или, в крайнем случае, на 128MB.

 

4.2 AGP 2X Mode (Режим AGP 2X)

Опции: Enabled, Disabled

Этот пункт в BIOS включает и выключает протокол передачи AGP2X. Стандарт AGP2X использует возрастающий край сигнала AGP для передачи данных. При 66MHz, это транслируется в пропускную способность 264MB/s. Включение режима AGP 2X Mode удваивает эту пропускную способность при помощи передачи данных по обоим (возрастающему и нисходящему) краям сигнала. Поэтому, в то время как тактовая частота или частота (следования) тактовых или синхронизирующих импульсов шины AGP все еще остается 66MHz, эффективная пропускная способность шины удваивается. Таким же образом достигается усиление производительности в UltraDMA 33. Однако, как чипсет на материнской плате так и видеокарточка должны поддерживать AGP2X режим до того как вы сможете использовать AGP2X протокол. Если ваша графическая карта поддерживает AGP2X режим, включите AGP 2X Mode в целях повышения AGP скорость передачи (transfer rate). Выключите его только если начинаются проблемы со стабильной работой (особенно с Super Socket 7 материнскими платами) или если планируете разогнать AGP шину за пределы 75MHz.

 

4.3 AGP Master 1WS Read (Уменьшение задержки до 1 цикла ожидания при считывании)

Опции: Enabled, Disabled

По умолчанию, AGP устройство ожидает минимум 2 периода или AGP цикла ожидания до того как он начнет транзакцию чтения. Эта опция BIOS позволяет вам уменьшить задержку только до 1 периода ожидания или цикла ожидания. Для лучшей производительности AGP считывания (read performance) включите эту опцию. Но выключите ее если вы обнаружите странные графические аномалии типа контуров или "каркасного" изображения и пиксельных артефактов после включения этой опции.

 

4.4 AGP Master 1WS Write (Уменьшение задержки до 1 цикла ожидания при записи)

Опции: Enabled, Disabled

По умолчанию, AGP устройство ожидает минимум 2 периода или AGP цикла ожидания до начала транзакции чтения. Эта опция BIOS позволяет вам уменьшить задержку только до 1 периода ожидания или цикла ожидания. Для лучшей производительности AGP записи включите эту опцию. Но выключите ее если вы обнаружите странные графические аномалии типа контуров или "каркасного" изображения и пиксельных артефактов после включения этой опции.

 

4.5 Режим AGP 4X

Опции: Enable, Disabled

Данная функция имеется только у материнских плат, поддерживающих AGP4X. Однако, она обычно отключена (выбрана позиция Disabled) по умолчанию, так как не каждый использует карту AGP4X. У пользователей карт AGP1X или 2X данная функция BIOS должна быть отключена, чтобы карты смогли нормально работать. Для того, чтобы избежать осложнений, производители предпочитают просто отключать режим AGP4X. Однако, это означает, что пользователи карт AGP4X не смогут воспользоваться большой пропускной способностью, которая доступна в режиме AGP4X. Хотя скорость передачи данных в режиме AGP4X незначительно выше, чем в режиме AGP2X, все равно будет неразумно не воспользоваться возможностями этого режима. Так что, если у вас видеокарта AGP4X, рекомендуется включить режим AGP4X (позиция enable) для лучшей работы шины AGP. Не включайте данный режим, если карта поддерживает только режимы передачи данных AGP1X или AGP2X.

 

4.6 AGP Driving Control

Опции: Автоматический режим, Ручной режим

Данная функция BIOS позволяет настраивать управление работой порта AGP. Обычно по умолчанию выбирается автоматический режим (позиция Auto), что позволяет чипсету автоматически настраивать работу AGP в соответствии установленной видеокартой формата AGP. Однако для устранения сбоев в работе и "разгона" шины можете перейти в ручной режим управления работой шины AGP для выбора необходимого значения AGP Driving Value.

 

4.7 AGP Driving Value

Опции: от 00 до FF (шестеричная система)

Данная опция зависит от функции BIOS, которая отвечает за настройку управления AGP (см. выше). Если эта функция будет переведена в автоматический режим, (позиция Auto), то значение, которое вы будет устанавливать в данной опции, работать не будет. Для того чтобы данная опция BIOS работала, необходимо перевести функцию настройки управления AGP в ручной режим (позиция Manual). AGP Driving Value определяет интенсивность сигнала шины AGP. Чем больше значение, тем сильнее сигнал. Диапазон значений в шестеричной системе счисления (от 00 до FF) соответствует диапазону от 0 to 255 в десятичных значениях. По умолчанию значение AGP Driving Value установлено на DA (218), однако, если вы используете AGP карту серии NVIDIA GeForce2, рекомендуется установить AGP Driving Value на более высокое значение EA (234). Характер данной опции BIOS позволяет "разгонять" шину AGP (работать на большей частоте, чем предусмотрено). Шина AGP чувствительна к "разгону", особенно в режиме AGP4X и с активированной повышенной пропускной способностью. По сути более высокое значение AGP Driving Value может оказаться как раз тем способом для "разгона" шины AGP, который Вам необходим. Увеличением силы сигнала шины Вы можете повысить стабильность ее работы на больших скоростях. Однако, будьте предельно осторожны, увеличивая значение AGP Driving Value при "разогнанной" шине AGP, так как Вы можете безнадежно повредить свою AGP карту! Кстати, вопреки некоторым сообщениям увеличение значения AGP Driving Value не улучшит работу шины AGP. Это не та опция, которая увеличивает производительность шины, так что не следует задирать ее значение, если в этом нет необходимости.

 

4.8 Init Display First (Определение основного видеоадаптера)

Опции: AGP, PCI

Если вы используете две видео карты, эта функция определяет какая видео карта будет «главной» AGP или PCI т.е. с неё будет осуществляться загрузка и дальнейшая работа. Полезна тем, кто установил две видео карты в систему, но всё равно использует один монитор. Если у вас установлена только одна видео карта, то BIOS автоматически определит её и загрузится нормально, независимо от значения опции. Однако, может быть небольшая задержка при инициализации видео, так что лучше ставьте то значение которое правильное. Т.е. если у вас AGP видеокарта выставляйте значение опции Init Display First в положение AGP. Если видеокарта PCI то соответственно положение PCI. Это ускорит процесс загрузки.

 

 


Список использованной литературы:

 

1. Тук М. Аппаратные средства IBM PC: Энциклопедия. 2-е изд. — СПб.: ПитерКом, 2001.

2. Тук М. Аппаратные средства IBM PC: Энциклопедия. — СПб.: Питер Ком, 1998.

3. Тук М. Аппаратные средства локальных сетей: Энциклопедия. — СПб.: Питер, 2000.

4. Тук М. Дисковая подсистема ПК. — СПб.: Питер, 2001.

5. Тук М. Интерфейсы ПК: Справочник. — СПб.: Питер Ком, 1999.

6. Тук М., Юров В. Процессоры Pentium 4, Athlon и другие. — СПб.: Питер, 2001.

7. Тук М., Юров В. Процессоры Pentium III, Athlon и другие. — СПб.: Питер, 2000.

8. Кулаков В. Программирование на аппаратном уровне: Специальный справочник. - СПб.: Питер, 2001.

9. Кулаков В. Программирование дисковых подсистем. — СПб.: Питер, 2002.

10. А.Микляев “Все настройки BIOS Setup”. - Альтекс-А, Москва, 2004 – 192 с.

11. Станислав Васильев,Адриан Вонг “Полные настройки BIOS”.

12. Антон Трасковский “Секреты BIOS”- СПб.: БХВ-Петербург, 2002. - 400 с.


Дата добавления: 2015-08-29; просмотров: 41 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Міністерство освіти і науки, молоді та спорту України | Попробуйте решить магический квадрат сумма каждой линии 34 !!

mybiblioteka.su - 2015-2024 год. (0.083 сек.)