Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1. Понятие о рад. без. Принципы обеспечения и оценка состояния рад. без. населения согласно закону о рад. без.населения. Рад-ная без-ть -это состояние защищенности настоящего и будущего поколения



1. Понятие о рад. без. Принципы обеспечения и оценка состояния рад. без. населения согласно закону о рад. без.населения. Рад-ная без-ть -это состояние защищенности настоящего и будущего поколения людей от вредного воздействия ионизирующего излучения. Принципами обеспечения радиационной безопасности являются: принцип нормирования - непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения; принцип обоснования - запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением; принцип оптимизации - поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

2. Радиоактивность. Природа радиоактивности. Понятие о изотопных нуклидах, радионуклидах. Радиоактивность- самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения. Каждый вид атомов независимо от принадлежности к конкретному элементу однозначно описывается числом нуклидов (суммой протонов и нейтронов). Поэтому число видов атомов превышает число элементов. Каждый вид атомов (вид ядер) называется нуклидом. Нуклид - это вид атомов и ядер, отвечающий определенным числам протонов и нейтронов.

Изотопные нуклиды (изотопы) - это нуклиды принадлежащие одному химическому элементу имеющие одинаковое число протонов, но различающиеся по числу нейтронов. Нуклиды подразделяют на стабильные и радиоактивные.

Большинство нуклидов, встречающихся в природе, стабильны. Или не радиоактивны; они могут сохраняться в неизмененном виде неограниченно долго. В природе имеются и радиоактивные нуклиды с ограниченным временем жизни, однако почти у всех природных нуклидов оно достаточно большое и не вызывает колебаний природного изотопного состава. Радионуклиды -это изотопы, ядра которых способны самопроизвольно распадаться. Период полураспада радионуклида – это промежуток времени, в течение которого количество исходных атомных ядер уменьшается вдвое (Т ½).



3. Закон радиоактивного распада. Период полураспада.

Теория радиоактивного распада. В процессе эмиссии радиоактивного излучения вещество претерпевает ряд изменений. Так, например, излучение радия сопровождается выделением газообразного радона ("эманацией"). В свою очередь радон, распадаясь, оставляет радиоактивные отложения на стенках содержащего его сосуда. Собранная при распаде радия эманация теряет половину исходной активности примерно за 4 сут. Эти и другие не поддававшиеся интерпретации экспериментальные факты удалось объяснить с помощью теории радиоактивного распада атомов, предложенной Резерфордом и Содди в 1903, а также правила смещения, сформулированного в 1913 А.Расселом и независимо от него Фаянсом и Содди. Суть теории Резерфорда и Содди состоит в том, что в результате радиоактивного распада происходит превращение одного химического элемента в другой. Период полураспада. Важнейшей характеристикой радиоактивного атома является его время жизни. Согласно закону радиоактивного распада, вероятность того, что за данный промежуток времени произойдет распад одного атома, есть величина постоянная. Следовательно, число ежесекундно происходящих распадов пропорционально количеству имеющихся атомов, а закон, описывающий процесс распада, имеет экспоненциальный характер. Если за время Т распадается половина исходного количества радиоактивных атомов, то половина оставшихся атомов распадется в течение следующего промежутка времени той же длительности. Время Т называется периодом полураспада радиоактивного элемента. Для различных элементов период полураспада составляет от десятков миллиардов лет до миллионных долей секунды и менее.

4. Ионизация. Понятие об ионизирующих излучениях.

Ионизирующее излучение -это излучение, которое создается при радиоактивном распаде ядерных превращений торможения заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков. Сходство между разными излучениями состоит в том, что все они обладают высокой энергией и осуществляют свое действие через эффекты ионизации и последующее развитие химических реакций в биологических структурах клетки. Что может привести к ее гибели. Ионизирующее излучение не воспринимается органами чувств человека, мы не чувствуем его воздействия на наше тело. Источник ионизирующего излучения - радиоактивное вещество или устройство, испускающее или способное испускать ионизирующее излучение сверх уровней, установленных нормативными правовыми актами, в том числе техническими нормативными правовыми актами, либо устройство, содержащее или использующее в работе радиоактивное вещество;

Различают два типа ионизирующих излучений: корпускулярное и электромагнитное. Корпускулярное излучение – представляет собой поток частиц (корпускул), которые характеризуются определенной массой, зарядом и скоростью. Это электроны, позитроны, протоны, нейтроны, ядра атомов гелия, дейтерия и др. Электромагнитное излучение – поток квантов или фотонов (g-лучи, рентгеновские лучи). Оно не имеет ни массы, ни заряда

5. Излучение радиоактивных веществ. Естественные радиоактивные элементы испускают три вида излучений: альфа, бета и гамма. В 1899 Резерфорд идентифицировал альфа- и бета-излучение; спустя год П.Вийар открыл гамма-излучение. Альфа-излучение представляет собой поток альфа-частиц, распространяющихся с начальной скоростью около 20 тыс. км/с. Их ионизирующая способность огромна, а так как на каждый акт ионизации тратится определенная энергия, то их проникающая способность незначительна: длина пробега в воздухе составляет 3—11 см, а в жидких и твердых средах — сотые доли миллиметра. Лист плотной бумаги полностью задерживает их. Надежной защитой от альфа-частиц является также одежда человека. Поскольку альфа-излучение имеет наибольшую ионизирующую, но наименьшую проникающую способность, внешнее облучение альфа-частицами практически безвредно, но попадание их внутрь организма весьма опасно. Бета-излучение — поток бета-частиц, которые в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света (300 тыс. км/с). Заряд бета-частиц меньше, а скорость больше, чем у альфа-частиц, поэтому они имеют меньшую ионизирующую, но большую проникающую способность. Длина пробега бета-частиц с высокой энергией составляет в воздухе до 20 м, воде и живых тканях — до 3 см, металле — до 1 см. На практике бета-частицы почти полностью поглощают оконные или автомобильные стекла и металлические экраны толщиной в несколько миллиметров. Одежда поглощает до 50 % бета-частиц. При внешнем облучении организма на глубину около 1 мм проникает 20—25 % бета-частиц. Поэтому внешнее бета-облучение представляет серьезную опасность лишь при попадании радиоактивных веществ непосредственно на кожу (особенно на глаза) или же внутрь организма. Так, после Чернобыльской аварии наблюдались бета-ожоги ног за 50—100 км от АЭС (например, в г. Народичи Житомирской области). Поэтому местному населению не рекомендовалось ходить по земле босиком. Гамма-излучение — это электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. Оно, как правило, сопровождает бета-распад, реже альфа-распад. По своей природе гамма-излучение представляет собой электромагнитное поле с длиной волны 10~8—10~и см. Оно испускается отдельными порциями (квантами) и распространяется со скоростью света. Ионизирующая способность его значительно меньше, чем у бета-частиц и тем более у альфа-частиц. Зато гамма-излучение имеет наибольшую проникающую способность и в воздухе может распространяться на сотни метров. Для ослабления его энергии в два раза необходим слой вещества (слой половинного ослабления) толщиной: воды — 23 см, стали — около 3, бетона — 10, дерева — 30 см. Из-за наибольшей проникающей способности гамма-излучение является важнейшим фактором поражающего действия радиоактивных излучений при внешнем облучении. Хорошей защитой от гамма-излучений являются тяжелые металлы, например свинец, который для этих целей используется наиболее часто. Нейтронное излучение представляет собой поток нейтронов, скорость распространения которых достигает 20 тыс. км/с. Так как нейтроны не имеют электрического заряда, они легко проникают в ядра атомов и захватываются ими. При ядерном взрыве большая часть нейтронов выделяется за короткий промежуток времени. Они легко проникают в живую ткань и захватываются ядрами ее атомов. Поэтому нейтронное излучение оказывает сильное поражающее действие при внешнем облучении. Лучшими; защитными материалами от них являются; легкие водородсодержащие материалы: полиэтилен, парафин, вода и др.

Рентгеновские излучения (икс-лучи) были открыты первыми из всех ионизирующих излучений и наиболее хорошо изучены. У них та же физическая природа (электромагнитное поле) и те же свойства, что и у гамма-излучений. Их различают прежде всего по способу получения, и в отличие от гамма-лучей они имеют внеядерное происхождение. Излучение получают в специальных вакуумных рентгеновских трубках при торможении (ударе о специальную мишень) быстро летящих электронов. Энергия квантов рентгеновских лучей несколько меньше, чем гамма-излучения большинства радиоактивных изотопов; соответственно несколько ниже их проникающая способность. Однако это второстепенные различия. Поэтому рентгеновские лучи широко используют вместо гамма-излучения, в частности для экспериментального облучения животных, семян растений и т. п. С этой целью применяют рентгеновские установки для облучения (просвечивания) людей. Лучшими защитными материалами от рентгеновских лучей являются тяжелые металлы и в частности свинец. В последние десятилетия появилась возможность получать электромагнитные излучения высокой энергии с помощью ускорителей заряженных частиц. Такое синхротронное излучение обладает теми же свойствами, что и рентгеновское и гамма-излучение.

6. Радиоактивность. Единица измерения удельной активности.

Радиоактивность — это способность некоторых природных элементов (радия, урана, тория и др.), а также искусственных радиоактивных изотопов самопроизвольно распадаться, испуская при этом невидимые и неощущаемые человеком излучения. Такие элементы называются радиоактивными. Самопроизвольное превращение (распад) приводит к изменению их атомного номера или массового числа. В первом случае происходит превращение одного химического элемента в другой, а во втором — превращение изотопов данного химического элемента. За единицу активности принято кюри, названная по фамилии Марии Кюри — польской ученой, открывшей искусственную радиоактивность. Кюри — это такое количество радиоактивного вещества, в котором происходит 37 млрд распадов ядер атомов за секунду:1 кюри (Ки) = 3,7 • 1010 расп./с.

7. Понятие о дозиметрии и радиометрии.

Радиометрия – обнаружение и измерение числа распадов атомных ядер в радиоактивных источниках либо некоторой доли их по испускаемому ядрами излучению. Дозиметрия – измерение рассеяния и поглощения энергии ионизирующего излучения в определенном материале. Доза излучения строго зависит от энергии и вида падающего излучения, а также от природы поглощающего материала.

8. Способы регистрации ионизирующих излучений. Принципы устройства и работы дозиметра. К основным и наиболее часто применяемым методам регистрации относятся следующие: ионизационные, оптические (сцинтилляционные), химические и фотографические. Ионизационный метод -основан на регистрации эффекта ионизации, т. е. на измерении величины заряда ионов, возникающих под действием ионизирующего излучения. Измерить ионизационный эффект можно при помощи электрического поля, которое препятствует рекомбинации ионов и придает им направленное движение к соответствующим электродам.

В качестве детекторов используют ионизационные камеры, пропорциональные счетчики, счетчики Гейгера—Мюллера, полупроводниковые детекторы и др. Химические методы - основаны на том, что часть поглощенной энергии излучения переходит в химическую, что вызывает цепь химических превращений. Определение наличия излучения, его интенсивности производится по выходу химических реакций. Например, при облучении водного раствора FeSO4 ионы двухвалентного железа Fe2+ превращаются в ионы трехвалентного железа Fe3+. Одновременно при этом изменяется электрический потенциал и окраска раствора, что можно легко определить соответствующими способами. Отметим, что при использовании химических методов следует подбирать в качестве детекторов такие вещества, химические изменения в которых пропорциональны дозе или интенсивности ионизирующего излучения Фотографические методы - основаны на способности излучения разлагать галогениды серебра AgCl или AgBr, входящие в состав чувствительных фотоэмульсий, до металлического серебра. В результате такого взаимодействия вдоль трека (следа прохождения) альфа- и бета-частиц выделяются зерна серебра и при проявлении фотопластинки виден след пробега ядерных частиц — почернение. По характеру трека можно определить вид, интенсивность и энергию излучения. Сцинтилляционный метод. - Некоторые вещества (сернистый цинк, йодистый натрий) под воздействием ионизирующих излучений светятся. Количество вспышек пропорционально мощности дозы излучения и регистрируется с помощью специальных приборов - фотоэлектронных умножителей.

Дозиметрические приборы предназначаются для:

· контроля облучения - получения данных о поглощенных или экспозиционных дозах излучения людьми и сельскохозяйственными животными;

· контроля радиоактивного заражения радиоактивными веществами людей, сельскохозяйственных животных, а также техники, транспорта, оборудования, средств индивидуальной защиты, одежды, продовольствия, воды, фуража и других объектов;

· радиационной разведки - определения уровня радиации на местности.

Кроме того, с помощью дозиметрических приборов может быть определена наведенная радиоактивность облученных нейтронными потоками различных технических средствах, предметах и грунте. Для радиационной разведки и дозиметрического контроля на объекте используют дозиметры и измерители мощности экспозиционной дозы. Принцип действия дозиметра подобен действию простейшего электроскопа. В процессе зарядки дозиметра визирная нить 3 электроскопа отклоняется от внутреннего электрода 5 под влиянием сил электростатического отталкивания. Отклонение нити зависит от приложенного напряжения, которое при зарядке регулируют и подбирают так, чтобы изображение визирной нити совместилось с нулем шкалы отсчетного устройства. При воздействии гамма-излучения на заряженный дозиметр в рабочем объеме камеры возникает ионизационный ток. Ионизационный ток уменьшает первоначальный заряд конденсатора и камеры, а следовательно, и потенциал внутреннего электрода. Изменение потенциала, измеряемого электроскопом, пропорционально экспозиционной дозе гамма-излучения. Изменение потенциала внутреннего электрода приводит к уменьшению сил электростатического отталкивания между визирной нитью и держателем электроскопа. В результате визирная нить сближается с держателем, а изображение её перемещается по шкале отсчетного устройства. Держа дозиметр против света и наблюдая через окуляр за нитью, можно в любой момент произвести отсчет полученной экспозиционной дозы излучения.

9. Понятие о дозах. Экспозиционная доза. Единица измерения. Мощность дозы.

Дозой облучения- называется энергия излучения, поглощенная в единице объема или массы вещества за все время воздействия излучения. Энергия излучения, поглощенная веществом, затрачивается на его ионизацию. Следовательно, доза облучения, характеризует степень ионизации вещества: чем больше доза, тем больше степень этой ионизации. Поэтому именно доза излучения (или облучения) является мерой поражающего действия радиоактивных излучений на организм человека, животного или растения. Одна и та же доза может накапливаться за разное время, причем биологический эффект облучения зависит не только от величины дозы, но и от времени ее накопления. Чем быстрее получена данная доза, тем больше ее поражающее действие, и наоборот. Экспозиционная доза излучения -это ионизационный эффект гамма-излучений в воздухе. Именно ее и измеряют дозиметрическими приборами. Она характеризует источник и радиоактивное поле, которое он создает. Это потенциальная опасность облучения. Человек может войти в это поле и облучиться, но может не войти и, следовательно, не подвергнуться облучению. Но поле с определенной дозой излучения остается.

Ее измеряют рентгенах (Р), а в системе СИ — кулонах на килограмм (Кл/кг). Мощность дозы характеризует интенсивность излучения (как правило, гамма-излучения). Это доза, создаваемая за единицу времени и характеризующая скорость накопления дозы. Измеряется в рентгенах в час (Р/ч). Чем больше уровень радиации (фон), тем меньше времени должны находиться на загрязненном участке люди, чтобы полученная ими Доза облучения не превысила допустимую. Так как уровень радиации пропорционален активности радиоактивных веществ, которая в соответствии с законом радиоактивного распада непрерывно уменьшается во времени, то и уровень радиации на местности после ее радиоактивного загрязнения также непрерывно снижается.

10. Поглощенная, эквивалентная, эффективная, коллективная дозы. Значение единицы измерения. Эквивалентная доза – она учитывает особенности повреждающего действия излучений на организм человека. 1 единица измерения – Зиверт (Зв) и бэр. Эффективная доза – она является мерой риска возникновения отдаленных последствий облучения всего человека или отдельных его органов с учетом радиочувствительности. Измеряется в Зивертах и бэрах. Поглощенная доза – это количество энергии, переданной излучением веществу в пересчете на единицу массы. Измеряется в Греях (Гр) и радах (рад). Коллективная — расчётная величина, введенная для характеристики эффектов или ущерба для здоровья от облучения группы людей; единица — Зиверт (Зв). Коллективная доза определяется как сумма произведений средних доз на число людей в дозовых интервалах. Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.

11. Особенности биологического действия ионизирующих излучений.

Ионизирующие излучения обладают высокой биологической активностью. Они способны вызывать ионизацию любых химических соединений биосубстратов, образование активных радикалов и этим индуцировать длительно протекающие реакции в живых тканях. Воздействуя на живой организм, ионизирующее излучение вызывает в нем цепочку обратимых и необратимых изменений в клетках, тканях, органах и организме в целом. Результатом биологического действия радиации является нарушение нормальных биохимических процессов с последующими функциональными и морфологическими изменениями в клетках и тканях организма, вплоть до его гибели.

 

12. Радиочувствительность Наиболее опасно для человека Альфа, Бета и Гамма излучение, которое может привести к серьезным заболеваниям, генетическим нарушения и даже смерти. Степень влияния радиации на здоровье человека зависит от вида излучения, времени и частоты. Заряженные частицы очень активны и сильно взаимодействуют с веществом, поэтому даже одной альфа-частицы может хватить, чтобы уничтожить живой организм или повредить огромное количество клеток. Клетки имеют разное строение и выполняют различные функции Ткань – это не просто сумма клеток, это уже система, имеющая свои функции. Она имеет свою систему саморегуляции и, установлено, что клетки ткани, которые активно делятся, более подвержены действию радиации. Поэтому мышцы, мозг, соединительные ткани у взрослых организмов достаточно устойчивы к воздействию радиации. Клетки же костного мозга, зародышевые клетки, клетки слизистой оболочки кишечника являются наиболее уязвимыми. Так как наибольшее деление клеток происходит в растущем организме, воздействие радиации на детский организм особенно опасно. Влияние облучения на плод может привести к рождению неполноценного потомства, причем самый опасный период – 8-15-я недели беременности, когда происходит закладка органов будущего человека.
У взрослого организма наиболее уязвимым является красный костный мозг, вырабатывающий клетки крови, которые сами не делятся и быстро «изнашиваются». Поэтому организм нуждается в постоянном их обновлении. Вырабатываемые красным костным мозгом лейкоциты (белые кровяные тельца) выполняют функцию защиты организма от попавших в него возбудителей инфекционных заболеваний (иммунная защита). В результате нарушения созревания клеток костного мозга резко снижается содержание лейкоцитов в крови, что приводит к снижению сопротивляемости организма к различным инфекциям. Весьма чувствительными являются клетки половых желез напомним, что если для всего организма в целом при однократном равномерном облучении коэффициент риска принять за единицу, то для половых желез (яичников, семенников) он равен 0,25, а для красного костного мозга – 0,12. Яичники взрослых женщин содержат большое число незаменяемых яйцеклеток, находящихся на разных стадиях развития. Поэтому облучение, приводящее к фактической или репродуктивной гибели яйцеклеток, может вызвать стойкое бесплодие. Облучение мужчин дозой 2,5 Гр вызывает стерильность в течение двух-трех лет, а после облучения дозой 4-6 Гр наступает постоянная стерильность. У женщин высокой радиационной чувствительностью обладают также молочные железы (коэффициент риска при однократном равномерном облучении равен 0,15). В системе органов пищеварения при одноразовом равномерном облучении наиболее радиочувствительной является печень, затем идут в порядке убывания радиочувствительности поджелудочная железа, кишечник, желудок, пищевод, слюнные железы, язык, полость рта. Относительно высокой радиочувствительностью обладают также клетки волосяных фолликулов. После облучения дозой 3-4 Гр волосы начинают редеть и выпадать в течение 1-3 недель. Затем рост волос может возобновиться. Однако при облучении дозой порядка 7 Гр происходит полная потеря волос. Следует отметить, что значительная часть радионуклидов попадает внутрь организма с вдыхаемым воздухом, пищей и водой. При этом наибольшие дозы внутреннего облучения получают органы систем дыхания и пищеварения, а также те органы, в которых накапливаются попавшие внутрь организма радионуклиды.

 

13. Радиобиологические эффекты состоят из двух групп — детерминированные и стохастические.Детерминированные эффекты (соматические) — это неизбежные, закономерные патологические состояния, возникающие при облучении большими дозами, в отношении которых предполагается существование порога. Они подразделяются на ближайшие последствия (острая, подострая и хроническая лучевая болезнь; локальные лучевые повреждения: лучевые ожоги кожи, лучевая катаракта и стерилизация) и отдаленные последствия (радиосклеротические процессы, радиоканцерогенез, радиокатарактогенез и прочие).Стохастические эффекты — это вредные биологические эффекты излучения, не имеющие дозового порога возникновения. В соответствии с общепринятой консервативной радиобиологической гипотезой, любой сколь угодно малый уровень облучения обусловливает определенный риск возникновения стохастических эффектов. Стохастические эффекты — это вероятностные эффекты, возникающие при облучении, в основном, малыми дозами. Они делятся на соматико-стохастические(лейкозы и опухоли различной локализации), генетические (доминантные и рецессивные генные мутации и хромосомные аберрации) и тератогенные (умственная отсталость, другие уродства развития; возможен риск возникновения рака и генетических эффектов облучения плода).

 

14 фоновое излучение ионизирующее Излучение – это излучение которое при взаимодействием с окружающей средой; вызывает образование зараженных частиц ионов(ионизация). сумма ионизирующего излучения от естественных и искусств. источников называют радиоцион. фоном. Естественные источники излучения оказывают внешнее и внутреннее воздействие на человека и создают естественный или природный радиационный фон, который представлен космическим излучение и излучением радионуклидов земного происхождения. В Беларуси естественный радиационный фон находится в пределах 10-20 мкР/ч (микрорентген в час). Существует такое понятие как технологически измененный естественный радиационный фон, который представляет собой излучение от природных источников, притерпевших изменения в результате деятельности человека. К технологически измененному естественному радиационному фону относятся излучения, в результате добычи полезных ископаемых, излучения при сгорании продуктов органического топлива, излучения в помещениях, построенных из материала, содержащих естественные радионуклиды. В почвах содержатся следующие радионуклиды: углерод-14, калий-40, свинец-210, полоний-210, среди наиболее распространенных в РБ можно назвать радон. Радон - благородный инертный газ, приобретает в жизни человека все большее значение. К сожалению, преимущественно оно негативно – радон радиоактивен и потому опасен. А поскольку он непрерывно выделяется из почвы, то и распространен по всей земной коре, в подземной и поверхностной воде, в атмосфере, присутствует в каждом доме. В цивилизованном обществе уже пришло сознание, что радоновая опасность является крупной и непростой комплексной проблемойУгрозу здесь представляет природный газ - радон и тяжелометаллические продукты его распада. Действие их человечество испытывает на себе на протяжении всего времени существования. Изотопы радона сорбируются (поглощаются) твердыми веществами. Наиболее продуктивным в этом отношении является уголь, поэтому угольные шахты должны находиться под усиленным вниманием правительства. Это же относится ко всем отраслям промышленности, потребляющим данный вид топлива. Радон - бесцветный газ, химически совершенно инертный. Вдыхание ГАЗА (конечно в смеси с кислородом) приводит человека в состояние, сходное с опьянением алкоголем. Наркотическое действие ГАЗА обуславливается растворением в нервных тканях. Чем выше атомный вес газа, тем сильнее его наркотическое действие. Радонотерапия может заменить плохо переносимые лекарства. Радон используется в сельском хозяйстве для активации кормов домашних животных, в металлургии в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах. В геологии измерение содержания радона в воздухе и воде применяется для поиска месторождений урана и тория, в гидрологии — для исследования взаимодействия грунтовых и речных вод. В настоящее время остаётся актуальной проблема облучения людей радиоактивным газом радономВсе строительные материалы, почва, земная кора содержат радионуклиды радия – 226 и тория – 232. В результате распада этих изотопов возникает радиоактивный газ – радон. Важным фактором, уменьшающим поступление радона в помещение, является выбор территории для строительства. · Радиационно-гигиеническое обследование населения и народно-хозяйственных объектов;

1) Радиоэкологическое сопровождение строительства зданий и сооружений.

2) Разработка и реализация мероприятий по снижению облучения населения.

3) Оценка состояния здоровья и осуществление профилактических медицинских мероприятий для групп радиационного риска.

4) Информационное обеспечение населения

 

15. Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных. Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природно-обусловленное загрязнение.Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия.Основной вклад в загрязнение от искусственных источников вносят различные медицинские процедуры и методы лечения, связанные с применением радиоактивности. Основной прибор, без которого не может обойтись ни одна крупная клиника – рентгеновский аппарат, но существует множество других методов диагностики и лечения, связанных с использованием радиоизотопов.Следующий источник облучения, созданный руками человека – радиоактивные осадки, выпавшие в результате испытания ядерного оружия в атмосфере, и, несмотря на то, что основная часть взрывов была произведена еще в 1950-60е годы, их последствия мы испытываем на себе и сейчас.В результате взрыва часть радиоактивных веществ выпадает неподалеку от полигона, часть задерживается в тропосфере и затем в течение месяца перемещается ветром на большие расстояния, постепенно оседая на землю, при этом оставаясь примерно на одной и той же широте. Однако большая доля радиоактивного материала выбрасывается в стратосферу и остается там более продолжительное время, также рассеиваясь по земной поверхности.

 

16. Атомная энергия - энергия, выделяющаяся в процессе превращения атомных ядер. Источником атомной энергии является внутренняя энергия атомного ядра. Более точное название атомной энергии - ядерная энергия. Различают два получения ядерной энергии: - осуществление ядерной цепной реакции деления тяжелых ядер; - осуществление термоядерной реакции синтеза легких ядер.Атомные электростанции оказывают на окружающую среду - тепловое, радиационное, химическое и механическое воздействие. Для обеспечения безопасности биосферы нужны необходимые и достаточные защитные средства. Под необходимой защитой окружающей среды будем понимать систему мер, направленных на компенсацию возможного превышения допустимых значений температур сред, механических и дозовых нагрузок, концентраций токсикогенных веществ в экосфере. С подписанием генерального контакта и закладкой Президентом капсулы в основание атомной станции строительство АЭС в Беларуси вышло на новую стадию. Проект по строительству АЭС довольно дорогостоящий.25 ноября 2011 года подписано межправительственное соглашение о предоставлении Правительству Республики Беларусь государственного экспортного кредита для строительства атомной электростанции.После принятия решения о строительстве АЭС в республике были начаты подготовительные работы к строительству, Михаил Иванович Михадюк ответил во время on Выход на "первый бетон" планируется начать в 2013 году. В 2012 году ввели в эксплуатацию ряд объектов на производственной базе АЭС, Кроме того, в республике проводится работа по формированию национальной системы подготовки кадров, необходимых для обеспечения эксплуатации будущей АЭС. С 2008 года реализуется Государственная программа подготовки кадров для ядерной энергетики Республики Беларусь на 2008-2020 годы. В рамках этой программы в БГУ, БНТУ, БГУИР и МГЭУ им. А.Д. Сахарова осуществляется подготовка студентов по новым специальностям в области ядерной энергетики, организована стажировка педагогов и научных работников высших учебных заведений за рубежом и производственная практика студентов в странах с развитой ядерной энергетикой (Россия)

17. Чернобыльская катастрофа — разрушение 26 апреля 1986 года четвёртого энергоблока Чернобыльской атомной электростанции. ПРИЧИНЫ: 1)Ошибки Проектантов- реактор представлял собой динамически нестабильную систему. Комиссией было проанализировано 13 версий причин аварии. Вместе с этим, экспертами отмечаются более глубокие причины катастрофы – это низкий уровень культуры ядерной безопасности в бывшем СССР. Что за этим кроется? Отсутствие развитой системы ядерного законодательства, невыполнение принципа полной ответственности за безопасность ядерной установки эксплуатирующей организацией. Недостаточное внимание к человеческому фактору и его возможному влиянию на безопасность АЭС. Недостаточное внимание к опыту других государств и отставание методологии анализа безопасности ядерных энергетических установок СССР. 2)Ошибки персонала: Тщательное расследование причин аварии, произведенное специалистами, показало, что корни аварии лежат глубоко в сфере проблем взаимодействия человека и машины, что основным «движущим» фактором аварии были действия операторов, грубо нарушивших эксплуатационные инструкции и правила управления энергоблоком. Подобно другим «рукотворным» катастрофам. Авария произошла из-за того, что оперативный персонал, желая выполнить план экспериментальных работ любой ценой, грубо нарушил регламент эксплуатации, инструкции и правила управления энергоблоком. Сказались, конечно, и некоторые особенности физики активной зоны, конструктивные недостатки системы управления и защиты реактора, которые привели к тому, что защита реактора не смогла предотвратить разгон на мгновенных нейтронах. В результате аварии радиоактивному загрязнению подверглись большая часть территории РБ с населением в 2,2 ш.человек. Особенно пострадали Гомельская, Могилевская и Бресткая области. Среди наиболее грязненных районов Гомельщины следует назвать Брагинский, Кормянский, Наровлянский, Хойникский. тковский и Чечерский. В Могилевской области-наиболее радиоактивно загрязнены Краснопольский Славгородский, Быховский и Костюковичский районы Брестской области загрязнены: Сталинский, Пинский и Дрогичинский районы. Радиационные осадки отмечены в Минской и одненской областях. Только Витебщина считается практически чистой областью. рвое время после аварии основной вклад в суммарную радиоактивность вносили короткоживущие дионуклиды: йод-131, стронций-89, теллур-132 и другие. В настоящее время загрязнение нашей республики определяет в основном цезий-137, в меньшей степени - стронций-90 и плутониевые радионуклиды, объясняется это тем, что более летучий цезий отнесен на большие расстояния. А более тяжелые, стронций и плутоний, осели ближе к ЧАЭС.

 

18. источники внешнего и внутренного облучения Существует два различных пути, при помощи которых излучение достигает ткани организма и воздействует на них. Первый путь – внешнее облучение от источника, расположенного вне организма. Оно вызывается гамма-излучением, рентгеновским излучением, нейтронами, которые глубоко проникают в организм, а также бета-лучами с высокой энергией, способными проникать в поверхностные слои кожи. Источниками фонового внешнего облучения являются космические излучения, гамма-излучающие нуклиды, которые содержатся в породах, почве, строительных материалах (бета-лучи в этом случае можно не учитывать в связи с низкой ионизацией воздуха, большим поглощением бета-активных частиц минералами и строительными конструкциями). Второй путь – внутреннее облучение от ионизирующих излучений радиоактивных веществ, находящихся внутри организма (при вдыхании, поступлении с водой и пищей, проникновении через кожу). В организм попадают как естественные, так и искусственные радиоизотопы. Подвергаясь в тканях тела радиоактивному распаду, эти изотопы излучают альфа-, бета-частицы, гамма-лучи. Существует ряд особенностей, которые делают внутреннее облучение во много раз более опасным, чем внешнее (при одних и тех же количествах радионуклидов): 1. При внутреннем облучении увеличивается время облучения тканей организма, так как при этом время облучения совпадает со временем нахождения РВ в организме (при внешнем облучении доза определяется временем нахождения в зоне радиационного воздейст2. Доза внутреннего облучения резко возрастает из-за практически бесконечно малого расстояния до тканей, которые подвергаются ионизирующему воздействию (так называемое контактное облучение). 3.При внутреннем облучении исключается поглощение альфа-частиц роговым слоем кожи (альфа-активные вещества становятся наиболее опасными). 4.За небольшим исключением РВ распределяются в тканях организма неравномерно, а выборочно концентрируются в отдельных органах, ещё более усиливая их облучение. 5. В случае внутреннего облучения нет возможности использовать методы защиты, которые разработаны для внешнего облучения (экранирование, сокращение времени нахождения в поле действия РВ, удаление от источника облучен.

 

19. социа.-эконом. последствия аварии на чаэс Поскольку районы Республики Беларусь, наиболее пострадавшие вследствие катастрофы на ЧАЭС, являются преимущественно сельскохозяйственными, в наибольшей степени чернобыльские последствия затронули именно эту сферу. Из сельскохозяйственного оборота выведено 2,64 тыс. кв.км сельхозугодий. Ликвидировано 54 колхоза и совхоза, закрыто девять заводов перерабатывающей промышленности агропромышленного комплекса. Резко сократились посевные площади и валовой сбор сельскохозяйственных культур, существенно уменьшилось поголовье скота. Значительно уменьшены размеры пользования лесными, минерально-сырьевыми и другими ресурсами. В зоне загрязнения оказались 132 месторождения различных видов минерально-сырьевых ресурсов, в том числе 47 % промышленных запасов формовочных, 19 % строительных и силикатных, 91 % стекольных песков республики; 20 % промышленных запасов мела, 13 % запасов глин для производства кирпича, 40 % тугоплавких глин, 65 % запасов строительного камня и 16 % цементного сырья. Из пользования выведено 22 месторождения минерально-сырьевых ресурсов, балансовые запасы которых составляют почти 5 млн. куб.м строительного песка, песчано-гравийных материалов и глин, 7,7 млн. т мела и 13,5 млн. т торфа. Из планов проведения геологоразведочных работ исключена территория Припятской нефтегазоносной области, ресурсы которой оценены в 52,2 млн. т нефти. Большой урон нанесен лесному хозяйству. Около четверти лесного фонда Беларуси - 17,3 тыс. кв.км леса подверглись радиоактивному загрязнению. Ежегодные потери древесных ресурсов превышают 2 млн. куб.м. В Гомельской и Могилевской областях, где загрязнено радионуклидами соответственно 51,6 и 36,4 % общей площади лесных массивов, заготовка древесины на территории с плотностью загрязнения по цезию-137 555 кБк/м2 и выше полностью прекращена. В зоне загрязнения находится около 340 промышленных предприятий, условия функционирования которых существенно ухудшились. В связи с отселением жителей из наиболее пострадавших районов, деятельность ряда промышленных предприятий и объектов социальной сферы прекращена. Другие же несут большие потери и продолжают терпеть убытки от снижения объемов производства, неполной окупаемости средств, вложенных в здания, сооружения, оборудование, мелиоративные системы. Существенными являются потери топлива, сырья и материалов. Экономический кризис поставил радиоактивно загрязненные территории в особо сложные социально-экономические условия. На них особенно резко проявляются общие черты кризиса: спад производства, отток из этих районов населения, неразвитость потребительского сектора, низкий уровень удовлетворения потребностей в социально-бытовом и медицинском обслуживании населения.

 

20. последствия аварии для здоровья населения рб Основные факторы чернобыльской катастрофы, влияющие на здоровье радиационные: внешнее и внутреннее облучение: дозообразующие радионуклиды йода, цезия, стронция, трансурановых элементов.нерадиационные: социальные; экономические; стресс;восприятие риска. В результате чернобыльской катастрофы радиойод (прежде всего йод-131) был одним из главных источников облучения населения, который воздействовал прежде всего на щитовидную железу. Самыми облученными жителями Беларуси оказались дети и подростки, особенно дети в возрасте до 7 лет. В результате воздействия радионуклидов йода на раннем этапе аварии и недостаточной эффективности мероприятий по защите щитовидной железы с 1990 г. в Беларуси начал регистрироваться рост заболеваемости раком щитовидной железы, особенно среди детей. По сравнению с доаварийным периодом количество случаев рака щитовидной железы после чернобыльской аварии возросло среди детей в 33,6 раза, среди взрослых в зависимости от возрастных групп - в 2,5-7 раз. Наибольшее число случаев рака щитовивыявляется среди жителей Гомельской и Брестской областей. Среднегодовые показатели заболеваемости лейкозами детского населения всех шести областей Беларуси в течение послеаварийного периода остаются стабильными. Отмечены тенденции к увеличению заболеваемости лейкозами у лиц пожилого возраста, однако установить связь с воздействием радиационного фактора пока не представляется возможным. Уровень первичной инвалидности участников ликвидации последствий аварии в 1,6 раза выше, чем среди взрослого населения республики (114,3 и 71,6 на 10000 человек соответственно). Основными причинами первичной инвалидности являются болезни системы кровообращения и новообразования. Уровень смертности участников ликвидации последствий аварии остается более низким по сравнению со смертностью взрослого населения.У населения, проживающего на загрязненных радионуклидами территориях, регистрируется более высокая заболеваемость болезнями нервной и эндокринной системы, злокачественными новообразованиями щитовидной железы по сравнению с населением, не проходящим специальную диспансеризацию. Наблюдаемое увеличение нарушений внутриутробного развития у населения Беларуси следует рассматривать как следствие комплексных негативных воздействий на репродуктивную функцию. Основное значение из таких факторов очевидно имеют физические мутагены (радионуклиды), химические эмбриотоксины и неполноценное питание. Однако такое заключение требует дополнительных широкомасштабных исследований. В целом действующая в республике система динамического наблюдения за пострадавшими от катастрофы на Чернобыльской АЭС с проведением ежегодных медицинских осмотров позволяет выявлять заболевания и своевременно проводить необходимые лечебно-реабилитационные мероприятия, что способствует сохранению здоровья пострадавшихдной железы

 

21. Последствия аварии для животного мира. После аварии в первые дни дикие животные получили до 150-20 000 бэр на щитовидную железу от йода-131. Это вызвало у них заболевания, подобные человеческим. Отметим, что летальная доза у диких млекопитающих составляет 500-1100 бэр, но остальные погибают уже при дозе 200 бэр. Внутреннее облучение многих млекопитающих привело к росту заболеваемости, преждевременной гибели, сокращению срока жизни, снижению плодовитости. Наблюдаются и генетические последствия. Так, иногда появляются необычно большие зайцы, ежи без колючек, различные уродства.Вместе с тем увеличилась численность диких кабанов, лосей, других млекопитающих. Это связано в основном с созданием заповедников, где пищи больше. В последние годы наблюдается следующая закономерность: число особей с высокой радиочувстчительностью уменьшается, в то время как число особей, имеющих меньшую радиочувствительность растет. У животных наблюдается также тенденция к уменьшению количества накопления радионуклидов, поэтому неизвестно, какое экологическое равновесие установиться. Большинство птиц более устойчивы к облучению. Для них летальная доза составляет от 460 до 3000 бэр, а дозы, которые влияют на потомство, - от 50 до 200 бэр. Еще более устойчивы к радиации рептилии, земноводные и беспозвоночные. Например, летальная доза для беспозвоночных составляет не менее 10 000 бэр.Выдерживают значительные дозы облучения и рыбы, но у них при небольших дозах проявляются генетические последствия. Пострадал от радиации крупный рогатый скот. Радиоактивным оказалось не только мясо, но и молоко: 80% радионуклидов, которые вместе с кормами поедает корова, уходят в него. Домашние свиньи более устойчивы к облучению, и летальная доза у них выше 800 бэр. Свиное мясо чище, чем говядина, так как свиней кормят более чистыми кормами. Куры также устойчивы к радиации: стронций уходит в скорлупу яиц, а цезий в яйца. В мясе кур цезий находиться в незначительном количестве. Последствия аварии для растительного мира.Лесные, луговые и болотные растения имеют достаточно высокую радиоактивность даже при минимальном загрязнении территории радионуклидами. Замечено, что различные растения неодинаково поглащают радионуклиды: сосна, береза, ель, осина, рябина, малина, черника, укроп, клюква, петрушка, шпинат, бобовые, злаки, гречка, белая ромашка и др. поглащают сильно, а ольха, фруктовые деревья, картофель, капуста, редька, хрен, ирис – слабее.В фруктах их больше в косточках, в капусте – в верхних листах и кочерыжке, в свекле и моркови – в начале ботвы и т.п.Воздействие радиации может привести к замедлению роста растений, снижению урожайности, увяданию, гибели, потере способности к воспроизводству. Сельскохозяйственные растения менее подвержены воздействию радиации благодаря вспашке. Однако в республике запрещено использовать под сельскохозяйственные работы 261 000 га пахотных земель. х – 1,5%.

 

 

23. Правила действия населения при возникновении радиационной опасности (укрытие в помещениях, защита кожи, защита органов дыхания, индивидуальная дезактивация)

При сигнале "Радиационная опасность" - сигнал подается в населенных пунктах, по направлению к которым движется радиоактивное облако, по этому сигналу:

- для защиты органов дыхания надевают респираторы, противогазы, тканевую или ватно-марлевую повязку, противопылевые маски, взять запас продуктов, предметов первой необходимости, индивидуальные средства медицинской защиты;

- укрываются в противорадиационных укрытиях, они защищают людей от внешнего гамма-излучения и от попадания радиоактивной пыли в органы дыхания, на кожу, одежду, а также от светового излучения ядерного взрыва. Они устраиваются в подвальных этажах сооружений и зданий, могут использоваться и наземные этажи, лучше каменных и кирпичных сооружений (полностью защищают от альфа и бета-излучений). В них должны быть основные (укрытие людей) и вспомогательные (санузлы, вентиляционные) помещения и помещения для зараженной одежды. В загородной зоне под противорадиационные укрытия приспосабливают подполья, подвалы. Если нет водопровода, создается запас воды из расчета 3-4 л в сутки на человека. - для защиты кожи от бета-излучения используют резиновые или прорезиненные перчатки; для защиты от гамма-излучения используют экраны из свинца.

- индивидуальная дезактивация – это процесс удаления радиоактивных веществ с поверхности одежды и других предметов. После нахождения на улице необходимо сначала вытряхнуть верхнюю одежду, став спиной к ветру. Наиболее грязные участки вычищают щеткой. Хранить верхнюю одежду нужно отдельно от домашней. При стирке одежду нужно предварительно замочить на 10 мин в 2% растворе суспензии на основе глины. Обувь необходимо регулярно мыть и менять при входе в помещение. При нарастании радиационной угрозы возможно проведение эвакуации. При поступлении сигнала необходимо подготовить документы, деньги, предметы первой необходимости. А также собрать необходимые лекарства, минимум одежды, запас консервированных продуктов. Собранные продукты и вещи обязательно следует упаковать в полиэтиленовые меши и пакеты.

 

22 Питание для предотвращения ионизирующей радиации Наибольшую опасность для человека представляет внутреннее облучение, т.е. радионуклиды, попавшие внутрь организма вместе с пищей. Снижению внутреннего облучения способствует уменьшение поступления радионуклидов в организм.Поэтому мясо необходимо вымачивать 2-4 часа в подсоленной воде. Желательно перед вымачиванием нарезать мясо на небольшие куски. Нужно исключить из рациона мясокостные бульоны, особенно с кислыми продуктами, т.к. стронций в основном переходит в бульон в кислой среде. При приготовление мясных и рыбных блюд следует слить воду и заменить на свежую, но после первой воды необходимо удалить из кастрюли и отделенные от мяса кости – так выводится до 50% радиоактивного цезия. Перед приготовлением блюд из рыбы и птицы следует удалить внутренности, сухожилия и головы, поскольку в них происходит наибольшее накопление радионуклидов. При варке рыбы в 2-5 раз уменьшается концентрация радионуклидов.

Грибы необходимо вымачивать в двухпроцентном растворе поваренной соли в течение нескольких часов.). Снижения содержания радиоактивных веществ в грибах можно достичь отвариванием их в солёной воде в течение 15-60 минут, причём, каждые 15 минут отвар необходимо сливать. Добавление в воду столового уксуса или лимонной кислоты увеличивает переход радионуклидов из грибов в отвар. При засолке или мариновании грибов можно уменьшить содержание радионуклидов в них в 1,5-2 раза. В шляпках грибов радиоактивных веществ накапливается больше, чем в ножках, поэтому желательно снимать кожицу со шляпок грибов. Сушить можно только чистые грибы, так как сушка не снижает содержание радионуклидов. Не совсем желательно применение сушеных грибов, т.к. при их последующем употреблении радионуклиды практически полностью переходят в продукты питания. Необходимо тщательно мыть овощи и фрукты, снимать кожуру. Овощи следует предварительно замачивать в воде на несколько часов.Дары леса наиболее загрязнены (основное количество радионуклидов располагается в верхнем слое лесной подстилки толщиной 3-5 сантиметров). Из ягод наименее загрязнены рябина, малина, земляника, наиболее – черника, клюква, голубика, брусника.

 

24. НОРМЫ РАД.БЕЗОПАСНОСТИ. НРБ-2000 применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. Требования и нормативы, установленные НРБ-2000, являются обязательными для всех юридических лиц, независимо от их подчиненности и формы собственности, в результате деятельности которых возможно облучениелюдей, а также для местных распорядительных и исполнительных органов, граждан, проживающих на территории Республики Беларусь. НРБ-2000 являются основополагающим документом, регламентирующим требования Закона Республики Беларусь «О радиационной безопасности населения» в форме основных пределов доз, допустимых уровней воздействия ионизирующего излучения и других требований по ограничению облучения человека. Никакие другие нормативные и методические документы не должны противоречить требованиям Норм.Главной целью радиационной безопасности является охрана здоровья населения, включая персонал, от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях хозяйства, в науке и медицине. Принципами радиационной безопасности являются: принцип нормирования, принцип обоснованности, принцип оптимизации (они изложены в Законе «О радиационной безопасности населения»).НРБ-2000 устанавливает следующие две категории облучаемых лиц:– персонал (профессиональные работники), непосредственно работающие с источниками ионизирующих излучений, или лица, которые по роду своей деятельности могут подвергаться облучению;– население – все население страны, включая лиц из персонала вне сферы и условий их деятельности.Для категорий облучаемых лиц устанавливаются три класса нормативов:– основные пределы доз (ПД);– допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения, являющиеся производными от основных пределов доз: пределы годового поступления (ПГП), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и др.;– контрольные уровни (дозы, уровни, активности, плотности потоков и др.). Предел дозы (ПД) – величина эффективной или эквивалентной дозы техногенного облучения, которая не должна превышаться в условиях нормальной работы. Основные пределы доз облучения (эффективная доза): для персонала 20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год; для населения – 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год.

 

 


Дата добавления: 2015-08-29; просмотров: 59 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
__ июля 2015 14:00 - 16:30 Севастополь, восточное побережье Карантинной бухты | К пищевым отравлениям не относятся

mybiblioteka.su - 2015-2024 год. (0.022 сек.)