Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

2. Классификация и обозначение металлорежущих станков



2. Классификация и обозначение металлорежущих станков

 

Металлорежущим станком называется машина, предназначенная для обработки заготовки определенной формы в соответствии с рабочим чертежом детали путем снятия стружки. Металлорежущие станки классифицируют по различным признакам.

По степени специализации различают станки:

1) универсальные, применяемые для выполнения различных операций на заготовках широкой номенклатуры;

2) специализированные, обрабатывающие однотипные заготовки, сходные по конфигурации, но имеющие различные размеры;

3) специальные, применяемые для обработки заготовок одного типоразмера. Специализированные и специальные станки используют в крупносерийном и массовом производстве, а универсальные, как правило, - в единичном и мелкосерийном.

По степени точности (ГОСТ 8-82 Е) станки разделены на классы; нормальной точности (класс Н), повышенной (класс П), высокой (класс В), особо высокой точности (класс А), а также особо точные или мастер-станки (класс С). Станки класса П строят с повышенными требованиями к точности изготовления и сборки. Точность станков классов В, А, С достигается за счет особенностей конструкции, высокой точности изготовления и специальных условий сборки и эксплуатации в помещениях с нормальной температурой и влажностью.

По массе станки делят на легкие - массой до 1 т, средние - до 10 т и тяжелые - свыше 10 т. Тяжелые станки, в свою очередь, подразделяют на крупные - от 10 до 30 т, собственно тяжелые - от 30 до 100 т, особо тяжелые - массой более 100 т.

По виду выполняемых работ и применяемых режущих инструментов все серийно выпускаемые станки делят на девять групп, каждая группа разделена на девять типов станков. Классификационная таблица (табл. 1) разработана ЭНИМС.

Обозначение модели серийно выпускаемых станков состоит из сочетания трех или четырех цифр, иногда с добавлением букв. Первая цифра обозначает номер группы по классификационной таблице, вторая цифра указывает тип станка. Третья, а иногда и четвертая цифры характеризуют основные параметры станка, различные для станков разных групп. Так, для фрезерных станков - это типоразмер стола, для поперечно-строгальных и долбежных - максимальный ход ползуна и т. д. Буква, если она находится между цифрами, указывает на модернизацию базовой модели станка. Буква после цифр обозначает модификацию или класс точности станка.



Например, вертикально-сверлильный станок модели 2Н150: здесь 2 - сверлильный, Н - модернизация, 1- вертикальный, 50 - наибольший условный диаметр сверления.

В моделях станков с программным управлением для обозначения степени автоматизации добавляется буква Ф с цифрой: Ф1 - станки с цифровой индикацией и преднабором координат, Ф2 - станки с позиционными и прямоугольными системами числового программного управления (ЧПУ); Ф3 - станки с контурными системами ЧПУ и Ф4 - станки с универсальной системой ЧПУ для позиционной и контурной обработки. Например, станок 6Р11Ф3 - вертикально-фрезерный консольный с контурной системой ЧПУ с первым типоразмером стола. Для станков с цикловыми системами программного управления введен индекс Ц, с оперативными системами - индекс Т (например, 16К20Т1).

 

 

3. Основные показатели станков

 

Одним из основных требований, которые предъявляются к современным металлорежущим станкам являются требования точности работы. Под термином точность работы станка понимается стабильность обеспечения станком получения заданной геометрической формы обрабатываемой детали, качества ее поверхности и точности размеров, определяющих основные параметры формы. Точность работы станка зависит от многих факторов, связанных с проектированием и изготовлением станка, правильности его эксплуатации и своевременного профилактического ремонта станка. Повышение точности станка достигается совершенствованием технологии изготовления его деталей и сборки его узлов, а сохранение первоначальной точности на длительное время в эксплуатационных условиях - тщательностью ухода и принудительным профилактическим осмотром.

Другим не менее важным показателем работы станка является его производительность. Производительность станка характеризуется различными показателями, из которых наиболее простым и наглядным является количество обрабатываемых деталей в единицу времени. Этот показатель является относительным, так как на одном и том же станке при различной его настройке и наличии тех или иных приспособлений, особенно на станке универсального назначения, можно получить различные значения этого показателя. Для достижения максимальной производительности основное внимание должно быть обращено на сокращение вспомогательного времени, связанного со сменой заготовки, инструмента и управлением циклом обработки на станке. При прочих равных условиях многоинструментальная обработка является одним из способов повышения производительности. Максимальное сокращение вспомогательного времени и возможность применения многоинструментальной обработки обеспечивается автоматизацией цикла работы станка.

На универсальных станках с ручным управлением производительность достигается путем рационального и удобного расположения органов управления, применения преселективного управления, позволяющего сократить время и перестройку режимов обработки, путем предварительного, в процессе рабочего хода на предыдущей операции, набора нужного сочетания блочных колес коробок скоростей и подач, требуемых на следующей операции. Автоматизация управления металлорежущим станком является основным направлением развития современного станкостроения. Автоматизированные станки получили широкое внедрение не только в крупносерийном и массовом производстве, но начали широко применяться и при мелкосерийном и единичном производстве. Последнему способствует появившиеся в последнее время станки с программным управлением, которые, как указывалось выше, могут легко переналаживаться на обработку любой детали.

Способность станка работать безотказно и обеспечивать бесперебойную обработку деталей в заданных условиях эксплуатации называется надежностью. Степень надежности характеризуется так называемым коэффициентом надежности и определяется статистическим путем, как отношение фактического времени работы станка к запланированному

где Тпр — время простоя станка вследствие неисправностей;

Трп — время рабочего периода. Значение коэффициента надежности колеблется в пределах 0,8—0,98.

Под понятием долговечность подразумевается срок службы станка в заданных условиях эксплуатации, когда затраты на восстановление его работоспособности экономически целесообразны. Большое значение для обеспечения нужного класса чистоты обрабатываемых деталей, стабильности работы станка, увеличения его надежности и долговечности является жесткость конструкции станка, что позволяет исключить или снизить возможность появления в процессе работы станка вибраций нежелательной частоты. Виброустойчивость станка обеспечивается не только увеличением массы корпусных деталей, но также учетом возможных источников возникновения вибраций и создания рациональных конструкций. В этом направлении ведутся теоретические и опытные изыскания по разработке методов расчета динамической прочности конструкции станка.

Рациональная конструкция станка и отдельных его механизмов, в свете требований охраны труда, считается такой, которая обеспечивает бесшумность его работы. При конструировании нового станка необходимо обеспечивать условия «технологичности конструкции». Под этим понятием подразумевается соблюдение при проектировании ряда условий, обеспечивающих возможность применения при обработке и сборке деталей станка наиболее прогрессивных и экономичных технологических процессов.

Технологичность конструкции характеризуется: себестоимостью станка, как суммарного показателя трудоемкости и металлоемкости, конструкции; сроком оборачиваемости средств, связанным с длительностью производственного процесса изготовления станка, степенью унификации узлов станка и нормализацией его деталей.

 

 

4. Основные определения и задачи компоновочного проектирования станков

 

Определяющую роль при размерной обработке заготовок играют траектории движений формообразования, от которых зависит самый важный показатель качества станка – его точность. Заданные траектории формообразующих движений и их расположение в пространстве обеспечиваются исполнительными звеньями и несущей системой станка. Совокупность исполнительных звеньев и деталей несущей системы, которая характеризуется их количеством, типом, пространственным расположением и пропорциями, называется компоновкой станка. Сами исполнительные звенья станка, узлы и детали его несущей системы (включая стыки) будем называть далее элементами компоновки.

Компоновка станка, как правило, состоит из одного стационарного (постоянно неподвижного) и нескольких подвижных элементов, разделенных стыками. Стационарный элемент компоновки не обязательно соответствует станине. Он может быть образован станиной и неподвижной стойкой (как у расточного станка), станиной и шпиндельной бабкой (как у обычного токарного станка) и т.п. каждый подвижный элемент компоновки выполняет одно определенное координатное движение, перемещаясь по направляющим подвижного стыка.

Совокупность элемента компоновки и соответствующего ему подвижного стыка называется подвижным блоком. Ряд подвижных блоков от исполнительного звена до стационарного элемента компоновки образует ветвь компоновки. Ветви составляют компоновку станка. Она представляет собой конструкционную структуру, строение станка, но без детализации отдельных его элементов. Отсутствие детализации проявляется, например, в том, что элементы компоновки обычно изображают как простые геометрические тела (призмы, цилиндры и др.) или их комбинации. Для их изображения необходимо указать, кроме типа, лишь размеры, в основном определяющие габарит элементов компоновки – так называемые компоновочные параметры, которые служат как бы связующим звеном между компоновкой и непосредственно конструкций узлов станка.

Основы изучения компоновки станков как самостоятельного объекта заложены Ю.Д. Враговым. Обычно разработка (синтез) компоновки производится на ранней стадии проектирования станка после обоснования его характеристик, выбора метода и движений формообразования, предварительного определения его кинематической структуры. Эта стадия проектирования является самой ответственной, когда от правильности выбора компоновки во многом зависит успех проекта в целом.
Компоновке обычного токарного станка (рис) соответствует расположение неподвижной бабки с вращающимся шпинделем на станине, по направляющим которой перемещается продольный суппорт с поперечными салазками. Если передать продольное
перемещение П2 шпиндельной бабке, оставив суппорту лишь поперечную подачу П3, то получится иная компоновка, свойственная токарным станкам фасонно-продольного точения (рис., б). Структура обеих компоновок различна. Формообразующие свойства и кинематическая структура одинаковы.
а) б)

 

Рис. Компоновки токарных станков: а – с продольным перемещением суппорта; б – с продольным перемещением шпиндельной бабки

Введем понятие компоновочного фактора, назвав им возможное существенное воздействие конструктора на показатели качества станка через выбор его компоновки. В состав компоновочных факторов входят:

1) структура компоновки как совокупность определенным образом связанных элементов (стационарного и подвижных, совершающих координатные движения);

2) пространственное расположение элементов компоновки (в частности основных плоскостей стыков);

3) габариты элементов компоновки (главным образом их размерные пропорции), от которых зависит соотношение жесткостей элементов компоновки по разным координатным осям;

4) вылеты – координатные расстояния (рис) между центрами жесткости стыков и точками приложения нагрузки (силы резания, веса элементов), сильно влияющие на перенос силовых воздействий и перемещений;
5) факторы категории сопряжений – типы подвижных стыков, отличающиеся соотношением длин подвижной и неподвижной частей.
Компоновочные факторы не зависят от конструкции узлов станка. Все они имеют количественное выражение и в значительной степени влияют на основные показатели качества станка.

Из изложенного следует, что задачами проектирования компоновки станков является определение компоновочных факторов, которые при
заданном наборе координатных движений исполнительных звеньев обеспечивают потенциальную возможность получения оптимальных (или близких к ним) значений основных показателей качества станка.

В качестве исходных данных на проектирование компоновки обычно используют: 1) вид и взаимное расположение инструмента и заготовки; 2) координатные движения исполнительных органов станка; 3) максимальные размеры заготовки, которые определяют размеры пространства, в котором производится обработка (рабочего пространства станка).

 

5. Кодирование и структурный синтез компоновок

 

Тип компоновки, как правило, оговаривается в техническом задании, тем не менее, при проектировании необходимо рассмотреть все возможные варианты компоновки и выбрать наилучшую (оптимальную).

Все возможные варианты компоновок станка сводятся в матрицу. В большинстве станков имеется три подвижных блока в соответствии с движением в направление трех координат они XYZ. X, Y, Z – обозначение подвижных блоков.

Подвижные блоки базируются на неподвижном, который обозначается буквой О.

Различные компоновки станков могут получаться в виде сочетания указанных и других букв. Это сочетание называется структурной формулой компоновки. Соседство букв означает наличие подвижных блоков.

Предложено считать, что ось X всегда горизонтальна, а ось Z направлена вдоль оси шпинделя.

Буква, отображающая блок несущий режущий инструмент располагается всегда крайней справа; а буква, отображающая блок, несущий заготовку располагается всегда крайней слева.

Из четырех букв 4!компоновок. 4! = 24.

 


ZYXO


ZYOX


ZOYX


OZXY


ZXYO


ZXOY


ZOXY


OZXY


XZYO


XZOY


XOZY


OXZY


YZXO


YZOX


YOZX


OYZX


XYZO


XYOZ


XOYZ


OXYZ


YXZO


YXOZ


YOXZ


OYXZ

 

Пример:


OZ

 


XYZO


 

XYOZ



Из полученных компоновок нереализуемые сразу отбрасываются, а рассматриваются только реальные. Далее по критериям:

1. Возможность изготовить данную компоновку с заданными требованиями по точности (технологический критерий);

2. Жесткость или податливость компоновки (лучше та, у которой жесткость больше);

3. Амплитуда и частота собственных колебаний;

4. Температурные деформации;

5. Металлоемкость и себестоимость изготовления.

 

 

7. Обзор компоновочных решений

Компоновочные решения существенно влияют на эксплуатационные качества станков (удобство расположения органов управления, доступность к местам смазки и регулирования, возможность быстрой и удобной разборки станка для ремонта или замены износившихся деталей, вопросы техники безопасности и технической эстетики). Большое влияние на компоновочные решения оказывает технологичность станка. Сущность поиска оптимального структурно-компоновочного решения заключается в следующем. Для изготовления изделий возможно множество G{g1,g2,...,gn} вариантов компоновочных решений, которые можно разделить на несколько видов: однопозиционное технологическое оборудование многопозиционное технологическое оборудование g2, система из многопозиционного оборудования (линии) g3. На первом шаге выбирают вид компоновочной схемы с минимальным значением выбранного критерия, для которого будет продолжаться поиск. С этой целью для каждого из трех видов разрабатывают варианты с максимальной (параллельной или параллельно-последовательной) концентрацией переходов в операции, обеспечивающие минимальные значения станкоемкости изготовления изделий и числа оборудования для полного их изготовления.

Для каждого вида компоновочного решения производят расчет приведенных затрат по формуле

где N — годовой объем выпуска изделий; m — общее число концентрированных операций изготовления изделий; δ, β — коэффициенты доплат и накладных расходов в относительных единицах; S0 — минутная заработная плата оператора; Tиi — трудоемкость изготовления i-го изделия; Ai — годовые затраты на оборудование; аi — число однотипного оборудования на каждой операции; Ен — нормативный коэффициент экономической эффективности.

Трудоемкость изготовления изделия Tи = Tс / f, где Тс — станкоемкость выполнения операции или время цикла работы станка; f > 2 — коэффициент многостаночного обслуживания.

Так как расчеты выполняют на ранних этапах проектирования и они носят укрупненный характер, в них не учитывают затраты на электроэнергию и инструмент, отнесенные к единице продукции, амортизационные отчисления рассчитывают по нормативным коэффициентам в зависимости от стоимости. Аналогичным образом учитывают и затраты на текущий ремонт и обслуживание, не учитывают сумму удельных потерь времени вследствие отказов оборудования, замены и настройки инструментов, ожидание наладчика.

На последующих шагах поиска производят выбор класса и группы выполнения операции из генерируемых вариантов. Этот выбор может быть выполнен по уточненному критерию с учетом всех вышеперечисленных факторов. При этом оптимальный вариант структурно-компоновочного решения не всегда будет иметь параллельную структуру выполнения операции. Разница между максимальной и оптимальной концентрацией тем больше, чем сложнее рассматриваемое оборудование и чем меньше объем выпуска изделий. При выборе оптимального варианта следует учитывать конкурирующие варианты и поэтому можно воспользоваться результатами предыдущих расчетов.
Целенаправленный поиск оптимального структурно-компоновочного решения технологического оборудования позволяет сократить число рассматриваемых вариантов структуры выполнения операций, причем на последних шагах поиска используют уточненный критерий. Все это приводит к значительному сокращению трудоемкости проектных работ.

При окончательном выборе структурно-компоновочной схемы технологического оборудования необходимо учесть ограничения, накладываемые конструкцией изготовляемых изделий (например, минимально возможное расстояние между шпинделями в многошпиндельной головке, доступность для обработки или сборки с одного установа и т. п.), технологическую последовательность выполнения операции и жесткость технологической системы, обеспечивающие выполнение требований к качеству изготовляемых изделий, надежность и габаритные размеры технологического оборудования. При начальных стадиях проектирования учесть эти ограничения невозможно вследствие значительного усложнения целевой функции, по которой просчитывают множество вариантов проектных решений.

Принятие оптимального решения по выбору компоновочного варианта технологического оборудования может осуществлять ЭВМ, выполняющая как расчетные работы, так и моделирование процессов изготовления изделий. Вследствие сложности формализации сквозного проектирования автоматических линий ЭВМ чаще всего используют в режиме диалога специалиста-технолога и ЭВМ. При этом творческие вопросы проектирования решает технолог, а рутинные вычислительные работы, оценку решения и определение направления поиска оптимального варианта выполняет ЭВМ.

 

 

Содержание.

1. Введение.

2. Классификация и обозначение металлорежущих станков.

3. Основные показатели станков.

4. Основные определения и задачи компоновочного проектирования станков

5. Кодирование и структурный синтез компоновок

6. Комплексная оценка качества компоновки

7. Обзор компоновочных решений.

 

1. Введение

 

Металлорежущие станки разнообразнее любых других технологических машин. Их различают по технологическому назначению и режущим инструментам, по размерам и типовым разновидностям, по системам управления и степени автоматизации и, кроме того, по компоновкам. Разнообразие компоновок является следствием не только множества технологических задач, размеров и форм обрабатываемых деталей, но и развития конструкций станков и способов обработки, причем в самом относительном характере движения формообразования заключено многообразие возможных вариантов движений заготовки и инструментов, а следовательно, и компоновок станков.

Особенно разнообразны компоновки специальных станков, однако типаж универсальных станков тоже непрерывно пополняется станками с новыми компоновками, существенно отличающимися от традиционных.

Традиционные компоновки фрезерных, токарных и др. универсальных станков прошли долгий путь совершенствования в связи с необходимостью использования новых инструментов, расширения универсальности, повышения жесткости в связи с интенсификацией режимов резания.

Компоновка — это система расположения узлов и управляющих станка, отличающаяся структурой, пропорциями и свойствами. Станки с различными конструкциями узлов (сборочных единиц) могут иметь одинаковые компоновки, и, наоборот, станки с одинаковыми конструкциями основных узлов (например, с агрегатными силовыми головками) могут иметь различные компоновки. Поэтому понятия конструкции и компоновки не следует отождествлять.

 

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДИРАЦИИ

ПЕРМСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

МЕХАНИКО-ТЕХНОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА «КОНСТРУИРОВАНИЕ МАШИН И ТЕХНОЛОГИЯ ОБРАБОТКИ МАТЕРИАЛОВ»

 

РЕФЕРАТ

ПО ДИСЦИПЛИНЕ «ТЕЗНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ»

НА ТЕМУ:

Компоновка станочного оборудования.

 

 

Выполнил: студент 3 курса

Специальности ТАМПуск-11-2

Тонков А.Ф.

Проверил: доцент кафедры

Шафранов А.В.

 

 

Пермь 2014

 


Дата добавления: 2015-08-28; просмотров: 48 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Рассказ «Толстый и тонкий». | Техника вышивания бисером на ткани.

mybiblioteka.su - 2015-2024 год. (0.027 сек.)