Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Сто великих научных открытий 10 страница



Утомленный работой, Кекуле отложил исписанные листы и подвинул кресло к камину. Приятная теплота постепенно окутала тело, и ученый забылся в полудреме. И снова в его сознании возникли шесть углеродных атомов, образуя причудливые фигуры. Шестиатомная «змея» непрерывно «извивалась» и вдруг, будто разозленная чем-то, она с ожесточением начала кусать себя за хвост, потом крепко ухватила его за кончик и так замерла. Нет, не змея, это же перстень графини Герлиц, который протягивал Кекуле Юстус Либих. Да, на его ладони лежит перстень — платиновая змея, переплетенная с золотой. Кекуле вздрогнул и очнулся. Какой странный сон! И длился-то всего мгновенье. Но атомы и молекулы не исчезали перед его глазами, он продолжал наяву вспоминать порядок расположения атомов в молекуле, увиденный во сне. Может быть, это и есть решение? Кекуле поспешно набросал на листке бумаги новую форму цепи. Первая кольцевая формула бензола...

Идея бензольного кольца дала новый толчок для экспериментальных и теоретических исследований. Статью «О строении ароматических соединений» Кекуле послал Вюрцу, который представил ее Парижской Академии наук. Статья была напечатана в «Бюллетене Академии» в январе 1865 года. Наука обогатилась еще одной новой, исключительно плодотворной теорией строения ароматических соединений.

•J

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

Дальнейшие исследования в этой области привели к открытию различных изомерных соединений, многие ученые стали проводить опыты по выяснению строения ароматических веществ, предлагали другие формулы бензола... Но теория Кекуле оказалась наиболее правомерной и вскоре утвердилась повсеместно. На основе своей теории Кекуле предсказал возможность существования трех изомерных соединений (орто, мета и пара) при наличии двух заместителей в бензольном кольце. Перед учеными открылось еще одно поле деятельности, появилась возможность синтеза новых веществ. В Германии над этим работали Гофман, Байер, во Франции — Вюрц, в Италии — Канниццаро, в России — Бутлеров и другие».

Формула бензола Кекуле вызвала и многочисленные возражения. Как пишет Г.В. Быков: «А. Клаус в 1867 году обратил внимание на то, что бензол по своим свойствам несходен с этиленом, на который он должен был бы походить судя по формуле Кекуле, и предложил свои формулы с перекрещивающимися связями. А. Ладенбург в 1869 году отметил, что по формуле Кекуле должны существовать два изомера для продуктов замещения при соседних углеродах, и предложил свою, призматическую, формулу.



А. Кекуле еще в 1869 году писал, что он считает эти возражения «не слишком вескими», и привел ряд реакций, хорошо объяснимых его формулой, которая кажется ему к тому же «элегантней и симметричней» других. В 1872 году он попытался вообще снять выдвинутые возражения, предложив так называемую осцилляционную гипотезу, согласно которой углеродный атом в какой-то момент соударяется один раз с одним и два раза с другим соседним атомом, а в следующий момент — наоборот. Эти удары, по представлениям Кекуле, соответствуют одинарной и двойной связям.

Дискуссия о строении бензольного ядра продолжалась еще многие годы. Была экспериментально опровергнута призматическая формула А. Ладенбурга, были выдвинуты известные формулы Г. Армстронга и А. Байера, физический смысл которых был еще менее ясен, и т. д. Но для установления строения огромного большинства ароматических соединений это и не имело существенного значения; важны были лишь следующие положения: атомы углерода расположены симметрично (в углах правильного шестиугольника), и все они равноценны друг другу»-

ПЕРИОДИЧЕСКИЙ ЗАКОН

В истории развития науки известно много крупных от -крытий. Но немногие из них можно сопоставить с тем, что сделал Менделеев — крупнейший химик мира. Хотя со времени открытия его закона прошло много лет, никто не может сказать, когда будет до конца понято все содержание знаменитой «таблицы Менделеева».

По словам самого Дмитрия Ивановича Менделеева, открытию периодического закона способствовало накопление «к концу 60-х годов таких новых сведений о редких элементах, которые открыли их разносторонние связи между собой и другими элементами». Можно перечислить и ряд других данных, которые дополняли представления о сходстве элементов и их свойствах: изучение изоморфизма, введение понятия о валентности, разработка новых способов определения атомных масс, обсуждение гипотезы Праута и др. И действительно, уже в пятидесятые—шестидесятые годы появилось свыше десятка заслуживающих внимания попыток найти систему элементов.

Все чаще в некоторых работах появляются мысли о необходимости классификации химических элементов. Так, в работе А. Беренфельда указывается, что серьезное значение имеет изучение редких элементов: «...они все более и более пополняют пробелы между известными... телами природы и помогают составить из этих тел непрерывный ряд, в котором всякий элемент имел бы свое определенное место».

Особенно интересна в этом отношении диссертация Н. Алышев-ского (1865), который писал: «В последнее время при громадном обилии материалов в химии все более и более пробивается стремление систематизировать, группировать выработанные факты. Современные химики пришли к заключению, что многие химические элементы, весьма различные по своим наружным физическим свойствам, в своих химических функциях очень сходны, даже тождественны между собой». И еще: «Если... естественные группы установятся в неорганической химии для всех, пока еще разрозненных, химически неделимых тел, тогда

И. Е. Репин. Д. И. Менделеев

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

изучение реакций этих облегчится в высшей степени, а с тем вместе представится возможность сделать те выводы, установить такие законы, которые до сих пор были уделом только одной органической химии».

Сам Н. Алышевский провел сравнение некоторых свойств на основе положения элементов в их естественных группах.

Но если уровень знаний эпохи объективно определил возможность научного решения проблемы, то от уровня знаний ученого и его мировоззрения зависело превратить эту возможность в действительность. Это не случайно удалось осуществить Менделееву.

Дмитрий Менделеев (1834—1907) родился в Тобольске в семье директора гимназии и попечителя народных училищ Тобольской губернии Ивана Павловича Менделеева и Марии Дмитриевны Менделеевой, урожденной Корнильевой. Воспитывала его мать, поскольку отец будущего химика ослеп вскоре после рождения своего сына.

Осенью 1841 года Митя поступил в Тобольскую гимназию. Он был принят в первый класс с условием, что останется там два года, пока ему не исполнится восемь лет.

Несчастья преследовали семью Менделеевых. Осенью 1847 года умер отец, а через три месяца — сестра Аполлинария. Весной 1849 года Митя окончил гимназию, и Марья Дмитриевна, распродав имущество, вместе с детьми отправилась сначала в Москву, а затем в Петербург. Ей хотелось, чтобы младший сын поступил в университет.

Лишь по ходатайству матери 9 августа 1850 года Дмитрий был зачислен студентом Главного педагогического института в Петербурге по физико-математическому факультету.

Первый научный труд Менделеева «Химический анализ ортита из Финляндии» был опубликован в 1854 году, на следующий год он окончил институт. В мае 1855 года Ученый совет присудил Менделееву титул «Старший учитель» и наградил золотой медалью. Врачи рекомендовали ему сменить нездоровый петербургский климат и уехать на юг.

В Одессе Менделеева назначили преподавателем математики, физики и естественных наук в гимназию при Ришельевском лицее. Много времени он отдавал работе над магистрской диссертацией, в которой рассматривал проблему «удельных объемов» с точки зрения унитарной теории Жерара, полностью отбросив дуалистическую теорию Берцели-уса. Эта работа показала удивительную способность Менделеева к обобщению и его широкие познания в химии.

Осенью Менделеев блестяще защитил диссертацию, с успехом прочел вступительную лекцию «Строение силикатных соединений» и в начале 1857 года стал приват-доцентом при Петербургском университете.

В 1859 году он был командирован за границу. Два года Менделеев провел в Германии, где организовал собственную лабораторию. В конце февраля 1861 года Менделеев приехал в Петербург. Найти преподавательскую работу в середине учебного года было невозможно. И он решается написать учебник органической химии. Вышедший вскоре в свет учеб-

основы мироздания

ник, а также перевод «Химической технологии» Вагнера принесли Менделееву большую известность.

1 января 1864 года Менделеев получил назначение на должность штатного доцента органической химии Петербургского университета. Одновременно с этой должностью Менделеев получил место профессора в Петербургском технологическом институте. Теперь забот о материальном обеспечении семьи стало меньше, и Менделеев приступил к работе над докторской диссертацией.

Защита диссертации состоялась 31 января 1865 года. Через два месяца Менделеев был назначен экстраординарным профессором по кафедре технической химии Петербургского университета, а в декабре — ординарным профессором.

В то время возникла острая необходимость создать новый учебник по неорганической химии, который бы отражал современный уровень развития химической науки. Эта идея захватила Менделеева. Одновременно он начал собирать материал для второго выпуска учебника, куда должно было войти описание химических элементов.

Менделеев тщательно изучил описание свойств элементов и их соединений. Но в каком порядке их проводить? Никакой системы расположения элементов не существовало. Тогда ученый сделал картонные карточки. На каждую карточку он заносил название элемента, его атомный вес, формулы соединений и основные свойства. Постепенно корзина наполнялась карточками, содержащими сведения обо всех известных к этому времени элементах. И все равно долгое время ничего не получалось. Говорят, что периодическую таблицу элементов ученый увидел во сне, оставалось ее лишь записать и обосновать.

Но, конечно же, открытие было совершено им не случайно, так как в его деятельности органически сочетались теория и практика, знание физической стороны явления, математическая интуиция и философское осмысление. Кроме того, Менделеев умел критически относиться к работам своих предшественников и современников. Не пересыщая себя информацией, он как бы пропускал полученные уже данные через призму еще не сформировавшейся до конца концепции и, подобно скульптору, отсек все лишнее.

Постепенно Менделеев понял, что с изменением атомного веса меняются и свойства элементов. Приближался к концу февраль 1869 года. Через несколько дней рукопись статьи, содержащей таблицу элементов, была закончена и сдана в печать.

1 марта 1869 года Д.И. Менделеев отправил в типографию листок, на котором был записан его «Опыт системы — элементов, основанной на их атомном весе и химическом сходстве». Через две недели он представил в Русское химическое общество статью «Соотношение свойств с атомным весом элементов». Сообщение об открытии Менделеева было сделано редактором «Журнала Русского химического общества» профессором Н.А. Меншуткиным на заседании общества 6 марта 1869 года. Сам

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

Менделеев на заседании не присутствовал, так как в это время по заданию Вольного экономического общества он обследовал сыроварни Тверской и Новгородской губерний.

С того дня, когда за простыми рядами символов химических элементов Менделеев увидел проявление закона природы, другие проблемы отошли на задний план. Он забросил работу над учебником «Основы химии», не занимался и исследованиями. Распределение элементов в таблице казалось ему несовершенным. По его мнению, атомные веса во многих случаях были определены неточно, и поэтому некоторые элементы не попадали на места, соответствующие их свойствам. Взяв за основу периодический закон, Менделеев изменил атомные веса этих элементов и поставил их в один ряд со сходными по свойствам элементами

В статье, вышедшей на немецком языке в «Анналах», издаваемых Либихом, Менделеев отвел большое место разделу «Применение периодического Закона для определения свойств еще не открытых элементов». Он предсказал и подробно описал свойства трех неизвестных еще науке элементов — эка-бора, эка-алюминия и эка-кремния.

Казалось, для Менделеева вопрос о периодическом законе был исчерпан. Но однажды осенью 1875 года, когда Менделеев просматривал доклады Парижской Академии наук, взгляд его упал на сообщение Лекока де Буабодрана об открытии нового элемента, названного им галлием. Однако французский исследователь указал удельный вес галлия — 4,7, а по вычислениям Менделеева у эка-алюминия получалось 5,9. Менделеев решил написать ученому, указав, что, судя по свойствам открытого им галлия, это не что иное, как предсказанный в 1869 году эка-алюми-ний.

И, действительно, более точные определения удельного веса галлия дали значение 5,94. Открытие галлия вызвало настоящую сенсацию среди ученых. Имена Менделеева и Лекока де Буабодрана сразу стали известны всему миру. Ученые, воодушевленные первым успехом, начали искать остальные, еще не открытые элементы, которые были предсказаны Менделеевым. В десятках лабораторий Европы закипела работа, сотни ученых мечтали о необыкновенных открытиях.

И успехи не заставили себя долго ждать. В 1879 году профессор Ларе Фредерик Нильсон, работавший в Упсальском университете (Швеция), открыл новый элемент, полностью соответствующий описанному Менделеевым эка-бору. Он назвал его скандием. Повторное доказательство предсказаний Менделеева вызвало настоящий триумф. Вскоре стали поступать сообщения об избрании Менделеева почетным членом различных европейских университетов и академий.

Прекрасным подтверждением менделеевского закона явилась и открытая Рамзаем группа инертных газов, давшая возможность включить в систему «нулевую» группу — пограничную между щелочными металлами и металлоидами. Сам Менделеев писал об «укрепителях»

ОСНОВЫ МИРОЗДАНИЯ

закона: «Писавши в 1871 году статью о приложении периодического закона к определению свойств еще неоткрытых элементов, я не думал, что доживу до оправдания этого следствия периодического закона, но действительность ответила иначе. Описаны были мною три элемента: экабор, экаалюминий и экасилиций, и не прошло 20 лет, как я имел уже величайшую радость видеть все три открытыми и получившими свои имена от тех трех стран, где найдены редкие минералы, их содержащие, и где сделано их открытие: галлия, скандия и германия. Л. де Буабодрана, Нильсона и Винклера, их открывших, я, с своей стороны, считаю истинными укрепителями периодического закона. Без них он не был бы признан в такой мере, как это случилось ныне В такой же мере я считаю Рамзая утвердителем справедливости периодического закона...» Сегодня ясно, что в менделеевском открытии слились воедино три линии развития химии: поиски систематики различных объектов химии (от атомов до кристаллов) в их взаимосвязи — понятие «химический элемент» их объединило; изучение индивидуальности элементов, особенно мало применявшихся тогда редких элементов, что позволило раскрыть понятие элемент-аналогии; изучение взаимосвязи свойств с составом и строением соединений, что привело к формированию целостного учения о периодичности.

ч

основы мироздания

Якоб Генри Вант-Гофф

СТЕРЕОХИМИЯ

«Идеи относительно «пространственного устройства мельчайших частиц материи стали высказываться с тех пор, как в науке появилось само представление о молекулах и составляющих их атомах, — пишет В.М. Потапов. — Так, еще Дж. Дальтон в начале XIX века говорил о возможных шарообразных, тетраэдрических, гексаэдрических формах в атомистике.

Примерно в то же самое время В. Вол-ластон обращал внимание на необходимость рассматривать расположение атомов в пространстве и указывал, что «устойчивое равновесие» при соединении атомов двух видов в соотношении 1:4 достигается при тетраэдрическом их расположении. Однако на возможность познать «геометрическое расположение первичных частичек» Волластон смотрел пессимистично. Мысли о возможности различного

расположения атомов в молекулах неоднократно высказывались в начале XIX века рядом ученых в связи с обсуждением проблем изомерии...

Так, в 1831 году Я. Берцелиус писал, что «существуют тела, составленные из одинакового числа атомов тех же элементов, но расположенных неодинаковым образом и поэтому имеющих неодинаковые химические свойства и неодинаковую кристаллическую форму».

Уже в конце сороковых годов Л. Гмелин отмечал: «Атомы не располагаются, как это выражается формулой, в одном ряду... а приближаются, на основании сродства, по возможности ближе друг к другу, вследствие чего они образуют более или менее регулярные фигуры. Поэтому чрезвычайно важно определить это расположение атомов... ибо от этого, может быть, прольется больше света на кристаллическую форму, изомерию... на конституцию органических соединений».

Знаменитый русский химик A.M. Бутлеров в ряде своих ранних работ также высказывал интересные мысли о пространственном строении молекул: «...я не верю, что невозможно, как это думает Кекуле, представить на плоскости положение атомов в пространстве».

Это высказывание 1864 года, а двумя годами ранее Бутлеров говорил о тетраэдрическом расположении заместителей вокруг углеродного атома: «...возьмем грубый пример и, предположив, что у четырехатомного пая углерода все 4 единицы сродства различны, представим его себе в виде тетраэдра, у которого каждая из 4-х плоскостей способна связать 1 пай

водорода...» Тем не менее нет оснований причислять Бутлерова к основателям стереохимии.

П.И. Вальден рассуждает: «Почему, спрашивается, потребовалось еще 25 лет, чтобы лишь в 1874 году возникла стереохимия?.. Ответ может быть легко дан: идея появилась ранее фактов! Факты, наблюдения — вот та питательная среда, в которой существует и развивается, а по мере надобности, в зависимости от накопления фактов, трансформируется идея».

Явления, непосредственно послужившие толчком для зарождения стереохимии, были открыты в одной из пограничных областей физики и химии при исследовании взаимодействия света и вещества.

Сначала был открыт поляризованный свет. Дальнейшие его исследования выполнил французский ученый и политический деятель Доминик Франсуа Араго (1786—1853). В 1811 году ему удалось обнаружить, что кварц обладает способностью вращать плоскость поляризации света. Араго назвал подобное явление оптической активностью. Становилось все более очевидным, что такая способность связана с кристаллическим состоянием. Ведь стоит растворить кварц, и он теряет оптическую активность.

Через четыре года следующий шаг сделал Ж. Б. Био, установивший, что оптической активностью обладает и целый ряд органических жидкостей. Ясно, что здесь объяснение надо было искать уже не в особенностях кристалла, а в свойствах самого вещества.

Дальнейший прогресс связан с работами Луи Пастера. Отправной точкой стереохимических работ Пастера стали кристаллографические исследования солей винной кислоты.

В.М. Потапов так описывает этот процесс: «На первом этапе исследований оптически активных веществ считали, что кристаллы их всегда гемиэдричны, т. е. могут существовать в двух формах, относящихся друг к другу как предмет к своему зеркальному изображению. Единственным кажущимся исключением из этого правила явились кристаллы правовращающей винной кислоты, которые, по данным немецкого химика Э. Митчерлиха, оказались негемиэдричными, полностью совпадающими по форме с кристаллами оптически неактивного изомера — виноградной кислоты.

В 1848 году Л. Пастер повторил эксперимент Э. Митчерлиха и обнаружил гемиэдрию в кристаллах натриевоаммониевой соли виноградной (оптически неактивной) кислоты. При этом оказалось, что одновременно встречаются кристаллы двух зеркальных форм. Отделив их пинцетом Друг от друга и отдельно растворив в воде, Пастер обнаружил, что оба раствора оптически активны, причем один вращает плоскость поляризации вправо, как природная винная кислота, а другой — влево. Таким образом, впервые было показано, что оптически неактивное вещество — виноградная кислота — является смесью двух оптически активных компонентов: право- и левовращающей винной кислоты».

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

Все приведенные выше достижения подготовили триумф Якоба Генри Вант-Гоффа (1852—1911). Он родился в Голландии в Роттердаме в семье врача. Окончив школу, Генри поступил в семнадцать лет в Политехнический институт в Дельфте. В конце второго курса он сдает экзамены уже за третий.

Вант-Гофф считает, что высшего образования недостаточно, и решает работать над докторской диссертацией. Для этого он решает продолжить образование в университете в Лейдене. Однако ему там решительно не понравилось, и Генри едет в Бонн к знаменитому химику Кекуле.

После открытия молодым ученым пропионовой кислоты Кекуле порекомендовал своему ученику поехать в Париж к профессору Вюрцу, специалисту по органическому синтезу.

В Париже Генри сблизился с французским химиком-технологом Жозефом Ашилем Ле Белем (1847—1930). Оба заинтересованно следили за исследованиями в области оптической изомерии, которые проводил Пастер.

А далее.. Вот что пишет в своей книге «Великие химики» К. Манолов: «В Утрехтском университете была богатая библиотека. Здесь Генри познакомился со статьей профессора Иоганнеса Вислиценуса о результатах исследования молочной кислоты.

Он взял листок бумаги и начертил формулу молочной кислоты. В центре молекулы — опять один асимметрический углеродный атом. В сущности, если четыре различных заместителя заменить атомами водорода, получится молекула метана. Представим, что атомы водорода в молекуле метана расположены в одной плоскости с атомом углерода. Вант-Гофф был поражен неожиданно возникшей мыслью. Он оставил статью недочитанной и вышел на улицу. Вечерний ветерок теребил его белокурые волосы, он ничего не замечал вокруг — перед глазами стояла только что изображенная им формула метана.

Но насколько вероятно, что все четыре водорода расположены в одной плоскости? В природе все стремится к состоянию с минимальной энергией. В данном случае это происходит лишь тогда, когда атомы водорода располагаются в пространстве равномерно вокруг углеродного атома. Вант-Гофф мысленно представил, как могла бы выглядеть молекула метана в пространстве. Тетраэдр! Конечно же, тетраэдр! Это наиболее выгодное расположение! А если атомы водорода заменить четырьмя различными заместителями? Они могут занять два различных положения в пространстве. Неужели это и есть решение загадки? Вант-Гофф бросился назад, в библиотеку. Как такая простая мысль до сих пор не пришла ему в голову? Различия в оптических свойствах веществ связаны прежде всего с пространственным строением их молекул.

На листке бумаги возле формулы молочной кислоты появилось два тетраэдра, причем один был зеркальным отображением другого.

Вант-Гофф ликовал. Молекулы органических соединений имеют пространственное строение! Это же так просто... Как это никто до сих

основы мироздания

пор не догадался? Он должен немедленно изложить свою гипотезу и опубликовать статью. Не исключена ошибка, но если его догадка окажется верной... Вант-Гофф достал чистый лист бумаги и написал заголовок будущей статьи: «Предложение применять в пространстве современные структурно-химические формулы вместе с примечанием об отношении между оптической вращательной способностью и химической конструкцией органических соединений». Название получилось довольно длинным, но оно точно отражало поставленную цель и основной вывод.

«Я позволю себе в этом предварительном сообщении выразить кое-какие мысли, которые могут вызвать дискуссию», — начал свою статью Вант-Гофф.

Намерения автора были самыми прекрасными, идеи оригинальными и многообещающими, но небольшая статья, напечатанная на голландском языке, осталась не замеченной европейскими учеными. Один только Бюи Балло, профессор физики в Утрехтском университете, оценил ее по достоинству».

Прошло лишь два месяца, как друг Вант-Гоффара — Ж.Ле Бель опубликовал свою работу. В ней появление оптической активности он объяснял пространственными особенностями строения молекул примерно так же, как это сделал ранее голландский ученый. Но работы не были совсем идентичны. «Наиболее существенное отличие заключалось в том, — пишет Потапов, — что Вант-Гофф говорил о направленности валентностей углеродного атома, пользуясь четкой геометрической картиной тетраэдра, а Ле Бель представлял валентности как некую неориентированную центростремительную силу. Возникающая вокруг углеродного атома группировка заместителей может быть, по Ле Белю, различной в зависимости от природы этих заместителей, но не обязательно тетраэдрической. В приложении к объяснению причин оптической активности при наличии так называемого асимметрического атома оба подхода давали одинаковый результат, однако более четко сформулированная теория Вант-Гоффа оказалась значительно плодотворнее при объяснении ряда других факторов».

Саму идею пространственного строения молекул голландец развил не только для того, чтобы объяснить явления оптической изомерии. «В своей статье, — продолжает Манолов, — он дал простое объяснение и геометрической изомерии. Рассмотрев строение фумаровой и малеино-вой кислот, он схематически показал, что две их карбоксильные группы могут находиться с одной или с двух противоположных сторон относительно плоскости двойной связи между атомами углерода.

Новая статья Вант-Гоффа «Химия в пространстве», где он высказал все эти соображения, послужила началом нового этапа в развитии органической химии. Вскоре после ее выхода из печати, в ноябре 1875 года, Вант-Гофф получил письмо от профессора Вислиценуса, который преподавал органическую химию в Вюрцбурге и был одним из

\\

100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

известнейших специалистов в этой области. «Я хотел бы получить согласие на перевод Вашей статьи на немецкий язык моим ассистентом доктором Германом, — писал Вислиценус. — Ваша теоретическая разработка доставила мне большую радость. Я вижу в ней не только чрезвычайно остроумную попытку объяснить до сих пор непонятные факты, но верю также, что она в нашей науке... приобретет эпохальное значение».

Перевод статьи вышел в свет в 1876 году. К этому времени Вант-Гоффу удалось получить место ассистента физики в Ветеринарном институте в Утрехте.

Особая «заслуга» в популяризации новых взглядов Вант-Гоффа принадлежала профессору Герману Кольбе из Лейпцига, который высказался против статьи, и притом в довольно резком тоне. В своих замечаниях по поводу статьи Вант-Гоффа он написал: «Какой-то доктор Я. Г. Вант-Гофф из Ветеринарного института в Утрехте, видимо, не имеет вкуса к точным химическим исследованиям. Ему значительно удобнее воссесть на Пегаса (вероятно, взятого напрокат в Ветеринарном институте) и провозгласить в своей «Химии в пространстве», что, как ему показалось во время смелого полета к химическому Парнасу, атомы расположены в межпланетном пространстве». Естественно, каждого, кто прочел эту резкую отповедь, заинтересовала теория Вант-Гоффа. Так началось ее быстрое распространение в научном мире. Теперь Вант-Гофф мог бы повторить слова своего кумира Байрона: «Однажды утром я проснулся знаменитостью». Через несколько дней после опубликования статьи Кольбе Вант-Гоффу была предложена должность преподавателя в Амстердамском университете, а с 1878 года он становится профессором химии».

Людвиг Больцман

«АШ-ТЕОРЕМА»

Людвиг Больцман, автор «аш-теоремы», без сомнения, был величайшим ученым и мыслителем, которого дала миру Австрия. Еще при жизни Больцман, несмотря на положение изгоя в научных кругах, был признан великим ученым, его приглашали читать лекции во многие страны. И, тем не менее, некоторые его идеи остаются загадкой даже в наше время. Сам Больцман писал о себе: «Идеей, заполняющей мой разум и деятельность, является развитие теории». А Макс Лауэ позднее эту мысль уточнит так: «Его идеал заключался в том, чтобы соединить все физические теории в единой картине мира».

Людвиг Эдуард Больцман родился в Вене 20 февраля 1844 года.

Людвиг учился блестяще, а мать поощряла его разнообразные интересы, дав ему всестороннее воспитание. В 1863 году Больцман поступил в Венский университет, где изучал математику и физику.

Тогда максвелловская электродинамика представляла собой новейшее достижение теоретической физики. Неудивительно, что и первая статья Людвига была посвящена электродинамике. Однако уже во второй своей работе, опубликованной в 1866 году в статье «О механическом значении второго начала термодинамики», где он показал, что температура соответствует средней кинетической энергии молекул газа, определились научные интересы Больцмана.

Осенью 1866 года, за два месяца до получения докторской степени, Больцман был принят в Институт физики на должность профессора-ассистента. В 1868 году Больцману было присвоено право чтения лекций в университетах, а годом позже он стал ординарным профессором математической физики в университете в Граце. В этот период он помимо разработки своих теоретических идей занимался и экспериментальными исследованиями связи между диэлектрической постоянной и показателем преломления с целью получить подтверждение максвелловской единой теории электродинамики и оптики. Для своих экспериментов он дважды брал в университете краткий отпуск, чтобы поработать в лабораториях Бунзена и Кенигсбергера в Гейдельберге и Гельмгольца и Кирхгофа в Берлине. Результаты этих исследований были опубликованы в 1873 —1874 годах.

Больцман принимал также активное участие в планировании новой Физической лаборатории в Граце, директором которой он стал в 1876 году.


Дата добавления: 2015-08-28; просмотров: 45 | Нарушение авторских прав







mybiblioteka.su - 2015-2025 год. (0.018 сек.)







<== предыдущая лекция | следующая лекция ==>