Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1). По современным представлениям, эндотелий — не просто барьер или фильтр. Эндотелий — активный эндокринный орган, самый большой в теле, диффузно рассеянный по всем тканям. Эндотелий синтезирует



1). По современным представлениям, эндотелий — не просто барьер или фильтр. Эндотелий — активный эндокринный орган, самый большой в теле, диффузно рассеянный по всем тканям. Эндотелий синтезирует субстанции, важные для контроля свертывания крови, регуляции тонуса и артериального давления, фильтрационной функции почек, сократительной активности сердца, метаболического обеспечения мозга. Контролирует диффузию воды, ионов, продуктов метаболизма. Реагирует на механическое воздействие текущей жидкости, кровяное давление и ответное напряжение, создаваемое мышечным слоем сосуда. Чувствителен к химическим и анатомическим повреждениям, которые могут приводить к повышенной агрегации и адгезии (прилипанию) циркулирующих клеток, развитию тромбоза, оседанию липидных конгломератов. Клетки эндотелия исполняют множество функций сосудистой системы, такие как: Вазоконстрикция и вазодилатация, для контроля артериального давления Регулирование компонентов свертывания крови, таких как тромбин и фибрин. Ангиогенез (формирование новых кровеносных сосудов)

2). Оксид азота действует как посредник в передаче клеточных сигналов внутри и между клетками. Оксид азота, производимый клетками эндотелия сосудов, отвечает за расслабление гладких мышц сосудов и их расширение, предотвращает агрегацию тромбоцитов и адгезию нейтрофилов к эндотелию, участвует в различных процессах в нервной, репродуктивной и иммунной системах. NO так же обладает цитотоксическим и цитостатическим свойствами. Клетки-киллеры иммунной системы используют оксид азота для уничтожения бактерий и клеток злокачественных опухолей. В организме человека и млекопитающих оксид азота главным образом образуется в результате окисления гуанидиновой группы аминокислоты L-аргинина с одновременным синтезом другой аминокислоты цитруллина под влиянием фермента NO-синтазы. Фермент был назван синтазой, а не синтетазой, поскольку для его работы не требуется энергия АТФ. Таким образом, нейрональная и эндотелиальная NOS неактивны при нормальном уровне Са2+ в клетке и начинают синтезировать NO в ответ на увеличение концентрации кальция в цитозоле, вызывающее связывание СаМ этими конститутивными ферментами. Длительное повышение уровня кальция приводит к постоянной продукции NO. Напротив, продукция индуцибельной формой NOS не зависит от уровня внутриклеточного кальция и при нормальном его уровне лимитирована только количеством фермента и субстрата и наличием кофакторов. Один из механизмов регуляции продукции NO - фосфорилирование молекулы NO-синтазы. Фосфорилирование конститутивных NOS цАМФ-зависмой протеинкиназой, протеинкиназой С, цГМФ-зависимой протеинкиназой, Са2+-кальмодулинзависимой протеинкиназой ведет к снижению активности этих ферментов. С другой стороны, протеинфосфатаза-кальцийнейрин может дефосфорилировать NOS, вызывая тем самым повышение ее каталитической активности. Кроме того, для NO-синтаз характерна регуляция по механизму отрицательной обратной связи. При этом к действию оксида азота, выступающего в качестве неконкурентного ингибитора, более чувствительны конститутивные изоформы, снижение активности, которых происходит за счет связывания NO с атомом железа гемовой группы ферментов. Для биологических тканей помимо генерации оксида азота в ходе ферментативных реакций с участием NOS обнаружена возможность превращения нитрит-аниона в NO. Этот процесс происходит в условиях ацидоза и при наличии восстановленных форм гемсодеращих белков, что характерно для такого патологического состояния как ишемия. Подобно другим пептидным гормонам эндотелины образуются при протеолитической обработке специфического препроэндотелина. Этот полипептид, известный под названием Big-эндотелин, состоит из 38 аминокислотных остатков. Процесс превращения Big-эндотелина в эндотелин осуществляется под действием мембраносвязанной металлопротеиназы – эндотелин-превращающего фермента. Физиологическое значение расщепления Big эндотелина в эндотелин состоит в том, что вазоконстрикторная активность эндотелина в 140 раз выше по сравнению с активностью Big эндотелина. Наиболее активен изомер - эндотелин-1. Он образуется не только в эндотелии, но и в гладких мышцах сосудов, нейронах, глие, мезенгиальных клетках почек, печени и других органах. Полупериод жизни - 10-20 мин., в плазме крови - 4-7 мин. Легкие удаляют до 90% эндотелинов. Эндотелин-1 причастен к ряду патологических процессов (инфаркту миокарда, нарушению ритма сердца, легочной и системной гипертонии, атеросклерозу и др.). Было показано, что эндотелин и Big эндотелин имеют прогностическое значение при нарушении сердечной деятельности, при инфаркте миокарда. Кроме того, эндотелин является маркером коронарного атеросклероза и коронарной эндотелиальной дисфункции, нарушения функционирования печени, снижения функции почек. Высокий уровень эндотелина в плазме наблюдается при различных состояниях: ишемии, после гемодиализа и сильной гипертензии. Высокие уровни эндотелина наблюдаются и после трансплантации сердца, печени, почек и костного мозга. Поскольку эндотелин действует преимущественно местно, естественно предположить, что повышение образования и поступления в кровь может быть причиной возникновения и усугубления тяжести течения ишемической болезни сердца. Конечный эффект эндотелина зависит от его концентрации. При низкой концентрации больше проявляется его сосудорасширяющий эффект благодаря связыванию с ETB рецепторами на эндотелии. Однако, при более высокой концентрации он начинает связываться с ETA рецепторами на гладкомышечных клетках и проявляет свою основную активность, вызывая значительное сужение сосудов. В норме существует баланс между сосудосуживающими (эндотелин, кальцитонин и др.) и сосудорасширяющими (NO, простациклини др.) агентами. Такой баланс поддерживает и регулирует кровяное давление.



3). конечный эффект NO - антиагрегирующий, противосвертывающий и вазодилататорный. NO предупреждает также рост и миграцию гладких мышц сосудов, тормозит выработку адгезивных молекул, препятствует развитию спазма в сосудах. Оксид азота выполняет функции нейромедиатора, транслятора нервных импульсов, участвует в механизмах памяти, обеспечивает бактерицидный эффект. Образование NO увеличивается также под действием ацетилхолина, кининов, серотонина, катехоламинов и др. При интактном эндотелии многие вазодилататоры (гистамин, брадикинин, ацетилхолин и др.) оказывают сосудорасширяющий эффект через оксид азота [6]. Особенно сильно NO расширяет мозговые сосуды. Если функции эндотелия нарушены, ацетилхолин вызывает либо ослабленную, либо извращенную реакцию. Поэтому реакция сосудов на ацетилхолин является показателем состояния эндотелия сосудов и используется в качестве теста его функционального состояния. Однако поврежденный эндотелий синтезирует большое количество эндотелинов, вызывающих вазоконстрикцию. Большие дозы эндотелинов, введенные добровольцам [22], приводят к значительным изменениям системной гемодинамики: снижению ЧСС и ударного объема сердца, увеличению на 50% сосудистого сопротивления в большом круге кровообращения и на 130% в малом. Специфично действие эндотелинов в различных сосудистых областях. В легких они разрушаются, но при легочной гипертензии в крови легких уровень этих веществ повышается в 2-3 раза [13]. Много эндотелинов образуется в почках. Полагают, что эндотелины причастны к развитию почечной гипертензии. При инсультах их уровень повышается и в спинномозговой жидкости.

4). Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Для такого взаимодействия также необходимы энергия в виде АТФ, ионы кальция и наличие биопотенциала. Биопотенциалы поступают от эфферентных окончаний вегетативных нервных волокон непосредственно на миоциты или опосредованно от соседних клеток через щелевидные контакты и передаются через кавеолы на элементы саркоплазматической сети, обуславливая выход из них ионов кальция в саркоплазму. Под влиянием ионов кальция развиваются механизмы взаимодействия между актиновыми и миозиновыми филаментами, аналогичные тем, которые происходят в саркомерах скелетных мышечных волокон, в результате чего происходит скольжение названных миофиламентов и перемещение плотных телец в цитоплазме. В миоцитах, кроме актиновых и миозиновых филаментов, имеются еще промежуточные, которые одним концом прикрепляются к цитоплазматическим плотным тельцам, а другим - прикрепительным тельцам на плазмолемме и таким образом передают усилия взаимодействия актиновых и миозиновых филаментов на сарколемму миоцита, чем и достигается его укорочение. Миоциты окружены снаружи рыхлой волокнистой соединительной тканью - эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. Цепь миоцитов, объединенных механической и метаболической связью, составляет функциональное мышечное волокно. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения. Роль депо кислорода в мышечной ткани выполняет пигмент миоглобин (Mb), способный обратимо связывать O2. Однако содержание миоглобина в мышцах человека невелико, поэтому количество запасенного кислорода не может обеспечить их нормального функционирования в течение длительного периода кислородного голодания. В миокарде кислород, связанный с миоглобином, обеспечивает протекание окислительных процессов в тех участках, кровоснабжение которых на короткий срок снижается или полностью прекращается во время систолы. Креатин фосфат в небольших количествах содержится в клетках мышц, функция его заключается в том, что он присоединяется к фосфатам для их, так сказать, перезарядки и превращения в аденозин трифосфат (АТФ), основной носитель энергии в мышцах. Для того, чтобы обеспечить энергией работающие мышцы, АТФ выделяет из себя фосфатную группу и превращается в аденозин дифосфат (АДФ). Креатин фосфат (КФ) при этом может пожертвовать своей фосфатной группой в пользу АДФ, превращая его в АТФ. Креатин фосфат сам по себе не несет никакой энергии. Все, что он делает - это выполняет простую одношаговую операцию по восстановлению надлежащего уровня АТФ. КФ в первую очередь отвечает за поддержание уровня энергии для работы в течение первых 25-30 секунд высокоинтенсивного упражнения.

5). Тропонин Т и тропонин I носят также название сердечных тропонинов. При ишемическом или каком-либо другом повреждении клеток миокарда тропониновый комплекс распадается, и молекулы тропонина попадают в кровь. Уже через 3-4 часа после случившегося, концентрацию тропонинов в крови можно измерить современными лабораторными методами. Анализ крови на содержание тропонина может быть использован как тест на несколько различных сердечных заболеваний, включая инфаркт миокарда. Креатинкиназа — это фермент, содержащийся в клетках сердечной мышцы, скелетной мускулатуры, головного мозга, щитовидной железы, легких. Наибольшее клиническое значение имеют следующие изоферменты (фракции) креатинкиназы: КК-МВ (сердечный изофермент, изменяющийся при повреждении клеток миокарда), КК-ВВ (мозговой изофермент, отражающий патологию клеток головного мозга), КК-ММ (мышечный изофермент, находящийся в скелетных мышцах). Повышение активности общей креатинкиназы наблюдается при повреждении любых вышеперечисленных клеток и поэтому не является специфичным. Наиболее часто значительное увеличение активности данного фермента отмечается при остром инфаркте миокарда (определение креатинкиназы, и особенно МВ-фракции, широко используется для ранней диагностики инфаркта миокарда, так как ее повышение отмечается уже через 2-4 часа после острого болевого приступа; возврат показателя к норме происходит достаточно быстро (на 3-6 сутки), поэтому определение общей креатинкиназы в крови в более поздние сроки для диагностики инфаркта миокарда малоинформативно). Повышение активности креатинкиназы нередко наблюдается и при острых миокардитах, однако является не столь выраженным и держится значительно дольше, чем при инфаркте. Высокая активность общей креатинкиназы нередко встречается при травматических повреждениях и заболеваниях скелетных мышц (например, при прогрессирующей мышечной дистрофии, миопатии, дерматомиозите), а также при некоторых заболеваниях головного мозга, после хирургических операций, приема больших доз психотропных препаратов и алкоголя, при любых видах шока, гипотиреозе. Снижение уровня креатинкиназы часто выявляется при тиреотоксикозе (повышенный выброс гормонов щитовидной железы). В нормальных условиях, в отсутствие повреждения или воспаления мышечной ткани, миоглобин в кровь не попадает. Подобно гемоглобину, миоглобин высокотоксичен при его нахождении в свободном состоянии в плазме крови: крупные молекулы миоглобина могут закупоривать канальцы почек и приводить к их некрозу; конкурируя с гемоглобином эритроцитов за связывание с кислородом в лёгких и не выполняя функцию отдавания кислорода тканям, свободный миоглобин ухудшает кислородное снабжение тканей и приводит к развитию тканевой гипоксии. Самоотравление организма свободным миоглобином и как следствие острая почечная недостаточность и тканевая гипоксия — одна из главных причин смерти при синдроме длительного сдавливания (крэш-синдром), встречающемся при тяжелых травмах со сдавлением или размозжением значительных количеств мышечной ткани. Лактатдегидрогеназа (L-лактат:NAD-оксидоредуктаза (LDH) 1.1.1.27) — фермент, принимающий участие в реакциях гликолиза. Лактатдегидрогеназа катализирует превращение лактата в пируват, при этом образуется HADH+. Лактатдегидрогеназа устойчива к химическим воздействиям, например к действию реактивов, окисляющих или блокирующих сульфгидрильные группы, например кйодоацетату и йодобензоату. Активность лактатдегидрогеназы снижается при повышении концентрации пирувата выше 10−4 М. Значительное инактивирование, обратимое при добавлении цистеина, происходит при инкубировании с парахлормеркурибензоатом. Аминотрансферазы содержатся практически во всех органах, но наиболее активно реакции трансаминирования идут в печени. К этой группе ферментов относятся такие важные для клинической лабораторной диагностики ферменты, как АСТ и АЛТ.

6). Неорганические вещества плазмы крови: катионы: Na+, К+, Са2+, Mg2+, Fe3+, Cu2+; анионы Cl-, PO43-, HCO3-, I-. Значение: обеспечение осмотического давления крови (на 60 % - NaCl). В норме давление осмотическое крови равно 7,7-8,1 атм.; обеспечение pH крови равное 7,36-7,4; обеспечение определенного уровня чувствительности клеток, участвующих в формировании мембранного потенциала. Ион Na регулирует функциональную активность возбудимых тканей(нервной, мышечной): поступление Na в кл. вследствие трансмембранного градиента ведет к развитию ПД. Участвует во вторично-активном транспорте глюкозы и ам-т в клетки, определяет осмотическое давление плазмы крови и, таким образом, распределение воды между кл. и внекл. Жидкостью.Измен-е конц. В плазме крови приводит к перераспределению воды между кл. и внекл. Жидкостью. Гипонатриемия- гипергидратация кл. Гипернатриемия – дегидратация кл. Ион K-регулирует функ-ю активность возбудимых тканей. Гипокалиемия – сниж-е возбудимости (аритмии, слабость скелетных мышц). Гиперкалиемия – повыш-е возбудимости (аритмии).

7). Альбумины составляют около 60% всех белков плазмы. Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени. Гипоальбуминемия — патологическое состояние, характеризующееся снижением уровняальбумина в сыворотке крови ниже 35 грамм/литр. Форма гипопротеинемии. В основном наблюдается при нефротическом синдроме, сепсисе, алиментарной дистрофии, почечной ипеченочной недостаточности.

8). Альбумины составляют около 60% всех белков плазмы. Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени. Глобулины подразделяются на несколько фракций: a -, b - и g -глобулины. a -Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К a -глобулинам относятся эритропоэтин, плазминоген, протромбин. b -Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови. g -Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg М, Jg D и Jg Е, защищающие организм от вирусов и бактерий. К g -глобулинам относятся также a и b – агглютинины крови, определяющие ее групповую принадлежность. Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах.

9). Белки острой фазы - группа белков концентрация, которых возрастает при наличии воспаления, сдавления, ожога,бактериальной или вирусной инфекции. - С-реактивного белка (С-РБ) - сывороточного предшественника амилоида A (SAP) - компонентов комплемента - альфа-1-гликопротеина - церулоплазмина - альфа-1-антиприпсина - альфа-макроглобулинов - фибриногена - протромбина - фактора VII - плазминогена - гаптоглобина - иммуноглобулинов - ферритина Синтез белков острой фазы активируется под действием провоспалительных цитокинов (интерлейкины — 1, 6, 11, факторы некроза опу­холей, интерферон гамма), представляет собой универсальную за­щитную реакцию и наблюдается не только при инфекционных процес­сах, но и при травмах, обширных ожогах и интоксикациях. Белки острой фазы синтезируются в печени и их уровень резко, в несколько сотен раз повышается при наличии любого повреждения тканей, вызванного вирусами, бактериями, антителами, некрозом. Данные белки запускают каскад реакций для отграничения воспалительного очага, от неповрежденных тканей. Большинство прочих белков плазмы крови относится к глобулинам. Среди них различают: a-глобулины, связывающие тироксин (см. ТИРОКСИН) и билирубин; b-глобулины, связывающие железо, холестерол и витамины A, D и K; g-глобулины, связывающие гистамин (см.ГИСТАМИН) и играющие важную роль в иммунологических реакциях организма, поэтому их иначе называют иммуноглобулинами (см. ИММУНОГЛОБУЛИНЫ) или антителами. Известны 5 основных классов иммуноглобулинов, наиболее часто встречающиеся из них IgG, IgA, IgM. Уменьшение и увеличение концентрации иммуноглобулинов в плазме крови может иметь как физиологический, так и патологический характер. Известны различные наследственные и приобретенные нарушения синтеза иммуноглобулинов. Снижение их количества часто она возникает при злокачественных заболеваниях крови, таких как хронический лимфатический лейкоз (см. ЛЕЙКОЗ), множественная миелома (см. МИЕЛОМНАЯ БОЛЕЗНЬ), болезнь Ходжкина; может быть следствием применения цитостатических препаратов или при значительных потерях белка (нефротический синдром (см. НЕФРОТИЧЕСКИЙ СИНДРОМ)). При полном отсутствие иммуноглобулинов, например, при СПИДе (см. СПИД), могут развиваться рецидивирующие бактериальные инфекции.
Повышенные концентрации иммуноглобулинов наблюдаются при острых и хронических инфекционных, а также аутоиммунных заболеваниях, например, при ревматизме (см.РЕВМАТИЗМ), системной красной волчанке и т. д. Весомую помощь в постановке диагноза многих инфекционных заболеваний оказывает выявление иммуноглобулинов к специфическим антигенам (иммунодиагностика (см. ИММУНОДИАГНОСТИКА)).

10). Всякое нарушение соотношения между отдельными белками и количественными изменениями в содержании плазменных белков и есть диспротеинемия. Гипопротеинемия - явление частое и сочетается с гипоальбуминемией. Гипопротеинемия встречается при ускоренном распаде отдельных белков, врожденном или приобретенном нарушении синтеза отдельных белков, уменьшении синтеза вследствие недостатка или качественной диспропорции аминокислот (голодание, лихорадка, нарушение усвоения белка, потеря белков, отеки, водянки, шок, ожоги,протеинурия, кровопотери). Гипопротеинемия чаще бывает преимущественно за счет альбуминов - она проявляется при различных механизмах развития гипопротеинемий. Истинная гиперпротеинемия характерна для макроглобулинемии, миеломной болезни, лейшманиозах, в отдельные периоды развития гепатитов. В остальных случаях гиперпротеинемия бывает связанной со сгущением крови. Отсюда относительная и абсолютная гиперпротеинемия. Для разделения белковых фракций используют метод электрофореза, основанный на различной подвижности белков сыворотки в электрическом поле. Методом электрофореза возможно определить различные виды белка в сыворотке крови. Отдельные белки, за исключением альбумина, обычно не определяются методом электрофореза. Однако, измеряются белковые фракции или группы (Альбумин, alfa1-alfa2-бетта-гамма-глобулин). Уровни белковых фракций можно определить путем измерения общего белка сыворотки крови и умножить на относительный процент от каждой доли белкового компонента, или автоматически с применением аппарата HellabioScan.
Электрофоре сыворотки всегда должен сопровождаться измерением сывороточных IgG, IgA и IgM концентраций. Электрофорез белков помогает выявить заболевания печени и почек, иммунной системы, некоторые злокачественные новообразования (лейкозы), острые и хронические инфекции, генетические поломки и др. Известен ряд своеобразных электрофоретических "синдромов" – типичных картин электрофореграмм, характерных для некоторых патологических состояний. Белки сыворотки разделяют методом электрофореза на альбумины и глобулины. 1. Острое воспаление с активацией системы комплемента и увеличением синтеза острофазных белков (a1-антитрипсина, гаптоглобина, фибриногена и др.). Оно проявляется увеличением доли a1- и a2-глобулинов и может быть подтверждено измерением СОЭ, исследованием концентрации С-реактивного белка, фибриногена (в динамике) и других острофазных белков. 2. Хроническое воспаление с усилением синтеза ряда острофазных белков, а также иммуноглобулинов; проявляется умеренным возрастанием a2- и b-глобулинов, повышением g-глобулинов и некоторым снижением альбумина. Подобные отклонения могут наблюдаться при хронических инфекциях, коллагенозах, аллергии, аутоиммунных процессах и при малигнизации. 11). Органические небелковые соединения плазмы делятся на две группы. I группа - азотсодержащие небелковые компоненты. В состав небелкового азота крови входит азот промежуточных и конечных продуктов обмена простых и сложных белков. Раньше небелковый азот называли остаточный азот (остается после осаждения белков):

  1. азот мочевины (50 %);
  2. азот аминокислот (25 %);
  3. низкомолекулярные пептиды;
  4. креатин;
  5. креатинин;
  6. билирубин;
  7. индикан;
  8. некоторые другие азотсодержащие вещества. При некоторых заболеваниях почек, а также при патологии, сопровождающейся массивным разрушением белков (например, тяжелые ожоги), может повышаться небелковый азот крови, т. е. наблюдается азотемия. Однако наиболее часто нарушается не общее содержание небелкового азота в крови, а соотношение между отдельными компонентами небелкового азота. Поэтому сейчас в плазме определяют азот отдельных компонентов. В понятие "остаточный азот" включают и низкомолекулярные пептиды. Среди низкомолекулярных пептидов есть много пептидов, обладающих высокой биологической активностью (например, гормоны пептидной природы). II группа - безазотистые органические вещества. К безазотистым (не содержат азот) органическим веществам плазмы крови относятся: углеводы, липиды и продукты их метаболизма (глюкоза, ПВК, лактат, кетоновые тела, жирные кислоты, холестерин и его эфиры и др.); минеральные вещества крови.

У здорового человека колебания в содержании небелкового (остаточного) азота крови незначительны и в основном зависят от количества поступающих с пищей белков. При ряде патологических состояний уровень небелкового азота в крови повышается. Это состояние носит название азотемии. Азотемия в зависимости от вызывающих ее причин подразделяется на ретенционную и продукционную. Ретенционная азотемия развивается в результате недостаточного выделения с мочой азотсодержащих продуктов при нормальном поступлении их в кровяное русло. Она в свою очередь может быть почечной и внепочечной. Как отмечалось, в количественном отношении главным конечным продуктом обмена белков в организме является мочевина. Принято считать, что мочевина в 18 раз менее токсична, чем остальные азотистые вещества. При острой почечной недостаточности концентрация мочевины в крови достигает 50–83 ммоль/л (норма 3,3–6,6 ммоль/л). Нарастание содержания мочевины в крови до 16–20 ммоль/л (в расчете на азот мочевины) является признаком нарушения функции почек средней тяжести, до 35 ммоль/л – тяжелым и свыше 50 ммоль/л – очень тяжелым нарушением с неблагоприятным прогнозом. К важным небелковым азотистым веществам крови относится также мочевая кислота. Напомним, что у человека мочевая кислота является конечным продуктом обмена пуриновых оснований. В норме концентрация мочевой кислоты в цельной крови составляет 0,18–0,24 ммоль/л (в сыворотке крови – около 0,29 ммоль/л). Повышение содержания мочевой кислоты в крови (гиперурикемия) – главный симптом подагры. При подагре уровень мочевой кислоты в сыворотке крови возрастает до 0,5–0,9 ммоль/л и даже до 1,1 ммоль/л.

12). Внутриклеточные белки, белки секретов, поступающие в кровь при разрушении клеток разных тканей. АЛТ и АСТ функция: ферменты, катализирующие реакции трансаминирования, локализация – гепатоциты, миоциты. Для выяыления повреждения гепатоцитов (диагностика геппатитов). Щелочная фосфотаза: фермент, катализирующий реакции отщепления фосфатов от различных соединений, локализация – желчные капилляры, прогтоки; выявление: активации повреждения остеобластов, повреждения желчных путей при холестазе, обтурации желчевыводящих путей. Альфа-амилаза – Фермент, катализирующий гидролиз крахмала и гликогена в ЖКТ; локализация – поджелудочная железа, слюнные железы. Используется для выявления повреждения кл.поджелуд.жел.(диагност. панкреатита). (см на moodle)

13). Бу́ферные систе́мы кро́ви (от англ. buffer, buff — смягчать удар) — физиологические системы и механизмы, обеспечивающиекислотно-основное равновесие в крови[1]. Они являются «первой линией защиты», препятствующей резким перепадам pH внутренней среды живых организмов. Бикарбонатная: Мощнейшая и, вместе с тем, самая управляемая система внеклеточной жидкости и крови, на долю которой приходится около 10 % всей буферной ёмкости крови. Представляет собой сопряжённую кислотно-основную пару, состоящую из молекулы угольной кислоты H2CO3, являющуюся источником протона и бикарбонат-аниона HCO3, выполняющего роль акцептора протона: H2CO3 ↔ H+ + HCO3.

Фосфатная: остоит из слабой кислоты Н2РО4- и сопряженного основания НРО42-. В основе ее действия лежит кислотно-основное равновесие, равновесие между гидрофофсфат- и дигидрофосфат-ионами: НРО42- + Н+ Н2РО4-; НРО42- + Н2О Н2РО4- + ОН- Фосфатная буферная система способа сопротивляться изменению рН в интервале 6, 2 - 8, 2, т. е. обеспечивает значительную долю буферной емкости крови. Фосфорная буферная система имеет более высокую емкость по кислоте, чем по щелочи. Поэтому она эффективно нейтрализует кислые метаболиты, поступающие в кровь, например молочную кислоту HLac Гемеглобиновая: на долю которой приходится около 75% буферной емкости крови, характеризующаяся равновесием между ионами гемоглобина Hb- и самим гемоглобином HНb, являющимся очень слабой кислотой. Ацидоз (от лат. acidus — кислый) — cмещение кислотно-щелочного баланса организма в сторону увеличения кислотности (уменьшению рН). Обычно продукты окисления органических кислот быстро удаляются из организма. При лихорадочных заболеваниях, кишечных расстройствах, беременности, голодании и др. они задерживаются в организме, что проявляется в лёгких случаях появлением вмоче ацетоуксусной кислоты и ацетона (т. н. ацетонурия), а в тяжёлых (например, при сахарном диабете) может привести к коме. Алкало́з (позднелат. alcali щелочь, от арабск. al-quali) — нарушение кислотно-щелочного равновесия организма, характеризующееся абсолютным или относительным избытком оснований. При алкалозе (особенно связанном с гипокапнией) происходят общие и регионарные нарушения гемодинамики: уменьшается мозговой и коронарный кровоток, снижаются АД и минутный объем крови. Возрастает нервно-мышечная возбудимость, возникает мышечный гипертонус вплоть до развития судорог и тетании. Нередко наблюдается угнетение моторики кишечника и развитие запоров; снижается активность дыхательного центра. Для газового алкалоза характерно снижение умственной работоспособности, головокружение, могут возникать обморочные состояния.

14). Формирование эритроцитов (эритропоэз) происходит в костном мозге черепа, рёбер и позвоночника, а у детей — ещё и в костном мозге в окончаниях длинных костей рук и ног. Продолжительность жизни — 3—4 месяца, разрушение (гемолиз) происходит в печении селезёнке. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения. Эритропоэз- процесс образования эритроцитов в организме. Под действием эритропоэтина в костном мозге возникает подъем эритропоэза и в результате увеличивается продукция ретикулоцитов. Основное действие эритропоэтина направлено на регуляцию входа эритропоэтинчувствительных клеток в эритрон. Он также оказывает влияние на эритроциты в различных стадиях зрелости: при введении эритропоэтина в них увеличивается включение 14С-глицина в тем, глобин и белки, а по некоторым данным сокращается время их митотического цикла. Мембрана эритроцитов: Липиды бислоя плазматической мембраны эритроцитов, так же, как плазматические мембраны других клеток, содержат глицерофосфолипиды, сфингофосфолипиды, гликолипиды и холестерол. Увеличение содержания холестерола в составе мембраны, которое может наблюдаться при некоторых заболеваниях, снижает её текучесть и эластичность, а следовательно, и способность к обратимой деформации. Это, в свою очередь, затрудняет движение эритроцитов через капилляры и может способствовать развитию гемостаза. Спектрин - периферический мембранный белок, нековалентно связанный с цитоплазматической поверхностью липидного бислоя мембраны. Он представляет собой длинную, тонкую, гибкую фибриллу и является основным белком цитоскелета эритроцитов. Спектрин состоит из α- и β-полипептидных цепей, имеющих доменное строение; α- и β-цепи димера расположены антипараллельно, перекручены друг с другом и нековалентно взаимодействуют во многих точках. Спектрин может прикрепляться к мембране и с помощью белка анкирина. Этот крупный белок соединяется с β-цепью спектрина и цитоплазматическим доменом интегрального белка мембраны. Интегральный белок полосы 3 - белок-переносчик ионов С1- и НСО3- через плазматическую мембрану эритроцитов по механизму пассивного антипорта. В разделе 1 подробно описана роль эритроцитов в газообмене. Поступающий из тканей в эритроциты СО2 под действием фермента карбоангидразы превращается в слабую угольную кислоту, которая распадается на Н+ и НСО3-. Образующиеся при этом протоны присоединяются к гемоглобину, уменьшая его сродство к О2, а бикарбонаты с помощью белка полосы 3 обмениваются на Cl- и выходят в плазму крови.

15). Гемоглоби́н (от др.-греч. αἷμα — кровь и лат. globus — шар) — сложныйжелезосодержащий белок кровосодержащих животных, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Главная функция гемоглобина состоит в переносе кислорода. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее(почти в 500 раз), чем кислород, образуя карбоксигемоглобин (HbCO). Некоторые процессы приводят к окислению иона железа в геме до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от мета… и гемоглобин, иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода. Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в легких. Синтез гема в основном идет в предшественниках эритроцитов, клетках печени, почек, слизистой кишечника, и в остальных тканях. Первая реакция синтеза с участием δ-аминолевулинат-синтазы (греч. δ - "дельта") происходит в митохондриях. Следующая реакция при участии аминолевулинатдегидратазы (порфобилиноген-синтазы) протекает в цитозоле. После синтеза порфобилиногена четыре его молекулы конденсируются в тетрапиррол. Различают два вида тетрапирролов - уропорфириноген типа I и уропорфириноген типа III. В синтезе обоих видов порфиринов принимает участие уропорфириноген I-синтаза, в образования уропорфириногена III дополнительно принимает участие фермент уропорфириноген III-косинтаза. Далее уропорфириногены превращаются в соответствующие копропорфириногены. Копропорфириноген III окисляется в протопорфириноген IX и далее в протопорфирин IX. Последний после связывания с железом образует гем, реакцию катализирует феррохелатаза (гемсинтаза).


Дата добавления: 2015-08-28; просмотров: 30 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Чередников Виктор | Сводный квартальный отчёт показателей эффективности работы социально адаптационного центра «Квартал - Луи» (1 февраля 2014г – 30 апреля 2015г.)

mybiblioteka.su - 2015-2024 год. (0.012 сек.)