Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Министерство общего и профессионального образования



Министерство общего и профессионального образования

Новосибирский государственный университет

 

Цикл гражданская оборона

 

ТЕМА: «Влияние радиации на организм человека»

 

Выполнила: Бородулина Е.В.

Гр.2412

Проверил: Белалы В.К.

 

 

Новосибирск

2006г.

Содержание.

 

Введение……………………………………………………………..3

 

Пути поступления радиации в организм человека………………..4

 

Механизм поражения…………………………………………….....4

 

Радиация и рак…………………………………………………..…..6

 

Генетические мутации………………………………………..…….6

 

Лучевая болезнь……………………………………………..………7

 

Список используемой литературы……………………….……….11


Введение.

 

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровен, герметизация помещений и даже полеты на самолетах все это увеличивает уровень облучения за счет естественных источников радиации.Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 эффективной годовой эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения.
Пути поступления радиации в организм человека. Существует несколько путей поступления радиоактивных веществ в организм: при вдыхании воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран.Наиболее опасен первый путь, поскольку, во-первых, объем легочной вентиляции очень большой, а во-вторых, значения коэффициента усвоения в легких более высоки. Пылевые частицы, на которых сорбированы радиоактивные изотопы, при вдыхании воздуха через верхние дыхательные пути частично оседают в полости рта и носоглотке. Отсюда пыль поступает в пищеварительный тракт. Остальные частицы поступают в легкие. Степень задержки аэрозолей в легких зависит от их дисперсионности. В легких задерживается около 20% всех частиц; при уменьшении размеров аэрозолей величина задержки увеличивается до 70%.При всасывании радиоактивных веществ из желудочно-кишечного тракта имеет значение коэффициент резорбции, характеризующий долю вещества, попадающего из желудочно-кишечного тракта в кровь. В зависимости от природы изотопа коэффициент изменяется в широких пределах: от сотых долей процента (для циркония, ниобия), до нескольких десятков процентов (водород, щелочноземельные элементы).Резорбция через неповрежденную кожу в 200-300 раз меньше, чем через желудочно-кишечный тракт, и, как правило, не играет существенной роли.При попадании радиоактивных веществ в организм любым путем они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается. Концентрации в крови долгоживущих изотопов в дальнейшем могут удерживаться практически на одном уровне в течение длительного времени вследствие обратного вымывания отложившихся веществ. Механизм поражения. Воздействие радиации на человека заключается в ионизации биологических тканей. Какое же в точности действие оказывает радиация на человеческое тело? Когда радиоактивное излучение проходит через тело или когда в каких-либо тканях организма присутствуют радиоактивные вещества, энергия волн и частиц передается тканям, подвергающимся облучению. А при передаче энергии от радиоактивных частиц клеткам и жидкостям тела происходит возбуждение атомов и молекул, составляющих тело. Эта передача энергии приводит к повреждению клеток, нарушению их деятельности и даже гибели, в зависимости от полученной дозы облучения и состояния здоровья человека на момент облучения.При этом поглощенная энергия в биологических тканях распределяется не равномерно, а отдельными разрозненными ''пачками''. В результате, громадное количество энергии излучения передается в определенные участки каких-нибудь клеток и совсем небольшое, если таковое вообще имеется в другие.Подобный неравномерный характер поглощения энергии объясняет особенности воздействия радиации на организм. Общее количество поглощенной тканями энергии может быть небольшим, но некоторые клетки живой материи из-за такой неравномерности распределения энергии излучения будут значительно повреждены.Поглощенная энергия в живом организме вызывает в нем возбуждение и ионизацию атомов и молекул, их смещение, т.е. образование дефектов, расщеплением устойчивой в организме молекулы на атомы или более простые комплексы молекул, превращением одних элементов в другие.Ничтожность поглощенного количества энергии, вызывающего тяжкие последствия, можно продемонстрировать несколькими способами.Например, энергию (дозу) рентгеновского излучения, несомненно, смертельного для человека при общем облучении, можно сравнить с тепловой энергией. При этом смертельная энергия рентгеновского излучения будет меньше тепловой энергии, поглощенной организмом после выпитой чашки горячего кофе, или после нескольких минут принятия солнечных ванн в теплый день. В свою очередь энергию смертельной дозы поглощенного рентгеновского излучения можно сравнить и с механической энергией: она будет соответствовать работе, выполняемой одним человеком при подъеме тела другого человека на высоту 40 см над уровнем пола.Тепловая или механическая энергия поглощается в тканях одинаково и равномерно. Поэтому, чтобы вызвать повреждение в живом организме, энергию подобного типа потребуется намного больше, чем энергии ионизирующего излучения.Для ионизирующего излучения нет барьеров в организме. Любая молекула может быть ионизирована и отсюда начинается путь радиоактивного поражения в виде разнообразных радиационно-химических реакций, биохимических сдвигов, разрегуляции, структурно - функциональных нарушений.Радиация увеличивает (неблагоприятным для тела образом) активность всех биологических систем. Основными элементами, составляющим тело, являются углерод, кислород, водород и сера. Кислород играет главную роль в расщеплении углеводов и жиров для получения энергии. Эта энергия используется клетками для построения белков, необходимых для формирования тканей тела. Кислород также играет ключевую роль в образовании ферментов, действующих в качестве катализаторов в биохимических реакциях.Взаимодействуя с атомом или молекулой тела, радиоактивное излучение может выбить оттуда электрон. Обычно свободные электроны захватываются молекулами кислорода. Имея лишний электрон, такая молекула кислорода становится нестабильной, она приобретает большую способность реагировать с другими молекулами, и будет пытаться "отобрать" электрон у другой, находящейся по соседству молекулы для восстановления своего стабильного состояния. Молекула, из которой был взят этот добавочный электрон, тоже становится нестабильной, и будет "отнимать" электрон у другой молекулы. Результатом этого будет настоящая цепная реакция в теле человека. Таким образом, химически активные молекулы кислорода нарушают функции и структуру клеток.Поскольку кислород присутствует в больших количествах внутри и вне клеток, образование большого количества химически активного кислорода при радиационном облучении приведет к разрушению других химических соединений в клетках, так как их молекулы будут стремиться к возвращению в стабильное состояние.Пораженными веществами в теле могут быть жиры или белки, жизненно необходимые для нормальной деятельности клеток. При поражении определенных белков, находящихся в клетке, результатом могут быть мутации, которые, в свою очередь, могут сделать организм предрасположенным к раку.Таким образом, радиация вызывает образование большого количества свободных электронов в организме человека. Это затем приводит к образованию химически активного кислорода и других измененных веществ, которые разъедают ткани, вызывая:- нарушение структуры клетки;- подавление активности ферментов;- образование аномальных белков;- образование веществ, вызывающих мутации и рак;- гибель клеток.В организме включаются защитные силы, начинает противостоять альтернативный путь восстанавливающих процессов и биологических реакций, направленных на исправление, адаптацию, компенсацию. Это противоборство, начавшись на молекулярном, невидимом и не чувствуемом уровне, постепенно поднимается на всё более высокие этапы биологического организма: от клетки к отдельным органам далее ко всему организму.Исход борьбы зависит от дозы.При больших дозах радиация может разрушать клетки, повреждать ткани различных органов и явиться причиной скорой гибели организма. Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения - как правило, не ранее чем через одно-два десятилетия. А врождённые пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению появляются лишь в следующем или последующих поколениях: это дети, внуки и более отдалённые потомки индивидуума, подвергшегося облучению.Воздействие малых доз облучения обнаружить почти всегда оказывается очень трудно. Частично это объясняется тем, что для их проявления должно пройти очень много времени. Но даже и обнаружив какие-то эффекты, требуется ещё доказать, что они объясняются действием радиации, поскольку и рак, и повреждения генетического аппарата могут быть вызваны не только радиацией, но и множеством других причин.Чтобы вызвать острое поражение организма, дозы облучения должны превышать определённый уровень, но, нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере, теоретически для этого достаточно самой малой дозы. Однако в то же самое время никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека защитные механизмы обычно ликвидируют все повреждения.Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность, или риск, наступления таких последствий у него больше, чем у человека, который не был облучён. И риск этот тем больше, чем больше доза облучения. Радиация и рак. Рак наиболее серьезное из всех последствий облучения человека при малых дозах, по крайней мере, непосредственно для тех людей, которые подверглись облучению.В самом деле, обширные обследования, охватившие около 100 000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки в 1945 году, показали, что пока рак является единственной причиной повышенной смертности в этой группе населения. Результаты тщательного обследования в течение более 30 лет многочисленной группы людей всех возрастов, которые подверглись более или менее равномерному облучению всего тела. Несмотря на все эти исследования, оценка вероятности заболевания людей раком в результате облучения не вполне надежна.Но все же ученые утверждают, что: любая сколь угодно малая доза увеличивает вероятность заболевания раком для человека, получившего эту дозу, и всякая дополнительная доза облучения еще более увеличивает эту вероятность. Генетические мутации. Мутагенное воздействие ионизирующего излучения впервые установили русские ученые Р.А. Надсон и Р.С. Филиппов в 1925 году в опытах на дрожжах. В 1927 году это открытие было подтверждено Р.Меллером на классическом генетическом объекте - дрозофиле.Ионизирующие излучения способны вызывать все виды наследственных перемен. Спектр мутаций, индуцированных облучением, не отличается от спектра спонтанных мутаций.Изучение генетических последствий облучения связано с еще большими трудностями, чем в случае рака. Во-первых, очень мало известно о том, какие повреждения возникают в генетическом аппарате человека при облучении; во-вторых, полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений; и, в-третьих, как и в случае рака, эти дефекты невозможно отличить от тех, которые возникли совсем по другим причинам.Около 10% всех живых новорожденных имеют те или иные генетические дефекты, начиная от необременительных физических недостатков типа дальтонизма и кончая такими тяжелыми состояниями, как синдром Дауна, хорея Гентингтона и различные пороки развития. Многие из эмбрионов и плодов с тяжелыми наследственными нарушениями не доживают до рождения; согласно имеющимся данным, около половины всех случаев спонтанного аборта связаны с аномалиями в генетическом материале. Но даже если дети с наследственными дефектами рождаются живыми, вероятность для них дожить до своего первого дня рождения в пять раз меньше, чем для нормальных детей.Генетические нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменения числа или структуры хромосом, и мутации в самих генах.Генные мутации подразделяются далее на доминантные (которые проявляются сразу в первом поколении) и рецессивные (которые могут проявиться лишь в том случае, если у обоих родителей мутантным является один и тот же ген; такие мутации могут не проявиться на протяжении многих поколений или не обнаружиться вообще). Оба типа аномалий могут привести к наследственным заболеваниям в последующих поколениях, а могут и не проявиться вообще. Лучевая болезнь.

Лучевая болезнь развивается в результате воздействия ионизирующего излучения. В зависимости от длительности облучения и сроков проявления заболевания различают острую и хроническую Л.б. Основной симптомокомплекс острой Л.б. формируется после кратковременного облучения в относительно короткие сроки. Хроническая Л.б. возникает при длительном облучении в дозах, существенно превышающих допустимые; формирование ее может происходить в течение месяцев и даже лет.



Острая лучевая болезнь

К развитию острой Л.б. могут приводить последствия атомного взрыва; нарушения правил работы или ошибки персонала, использующего источники ионизирующего излучения, авария систем, содержащих радионуклиды;применение высоких доз ионизирующего излучения с лечебной целью и (или) при подготовке к трансплантации костного мозга; а также случайный доступ к радиоактивному источнику лиц, не осведомленных о характере его действия.

В основе патогенеза острой Л.б. лежит повреждение систем клеточного обновления лимфоидной ткани, костного мозга, эпителия тонкой кишки и кожи. Возникновение дефицита стволовых клеток при воздействии излучения в определенном диапазоне доз приводит к цитопении (костномозговой синдром), поражению слизистой оболочки тонкой кишки (кишечный синдром), развитию интоксикации и гемодинамических нарушений вследствие обширной деструкции радиочувствительных органов и тканей (токсемический синдром) и, наконец, к нарушению функции и невосполнимой гибели нейронов (нервный, или церебральный, синдром).

Типичная острая Л.б. возникает вследствие кратковременного общего внешнего облучения или поступления внутрь радионуклидов, создающих в теле среднюю поглощенную дозу превышающую 1 Гр. В случае однократного облучения в дозе до 0,25 Гр обычное клиническое исследование существенных отклонений не обнаруживает. При облучении в дозах 0,25—0,75 Гр могут быть отмечены нерезкие изменения в картине крови, нервно-сосудистой регуляции, возникающие на 5—8-й неделе от момента облучения, очевидные лишь при сравнительном обследовании облученных и лиц из контрольной группы.

В формировании типичной формы острой Л.б. выделяют четыре фазы:

1. — первичной общей реакции,

2. — видимого клинического благополучия (латентная),

3. — выраженных клинических явлений (разгара болезни),

4. — непосредственного восстановления.

Фаза первичной общей реакции длится 1—3 сут. и характеризуется преобладанием нервно-регуляторных и диспептических нарушений, перераспределительными сдвигами в картине крови (чаще нейтрофильный лейкоцитоз), изменениями в деятельности различных анализаторных систем. Обнаруживаются признаки прямого радиационного повреждения лимфоидной и кроветворной ткани (начальная лимфопения, гибель молодых клеточных элементов костного мозга), а также ранние реакции сосудистой и нервной систем в виде нарушений гемодинамики, общемозговых и очаговых неврологических симптомов; при более высокой дозе излучения появляются признаки отека мозга.

Фаза видимого клинического благополучия в зависимости от дозы излучения продолжается от 10—15 дней до 4 5 нед. Характеризуется постепенным нарастанием изменений в наиболее радиочувствительных органах и тканях (продолжающееся опустошение костного мозга, энтерит, орофарингеальный синдром, подавление сперматогенеза, эрозии, пузыри и некроз кожи, эпиляция) при некотором стихании общих нервно-регуляторных нарушений и, как правило, удовлетворительном самочувствии больных.

Фаза выраженных клинических проявлений со стороны отдельных органов и систем возникает в различные сроки, что во многом определяется цитокинетическими параметрами систем клеточного обновления. Отмечаются глубокое поражение системы крови, угнетение иммунитета, развитие инфекционных осложнений, лихорадка и геморрагические явления, тяжелая астения с выраженной адинамией. Утяжеление общего состояния влечет за собой возникновение различных по глубине явлений нарушения сознания, вплоть до комы.

При дозах, превышающих 2,5—3,0 Гр, и несвоевременном или нерациональном лечении возможен смертельный исход. Непосредственными причинами смерти являются глубокое нарушение кроветворения, инфекционные осложнения (чаще геморрагически-некротическая пневмония), реже кровотечения. Длительность III фазы в случаях выздоровления не превышает 2—3 нед. К концу этого срока на фоне еще выраженной цитопении появляются первые признаки регенерации — молодые клеточные формы в клетках костного мозга.

В фазе восстановления общее состояние больных улучшается, температура тела снижается до нормы, исчезают геморрагические проявления, происходит отторжение некротических масс и полное или частичное заживление эрозированных поверхностей на коже и слизистых оболочках. В целом период восстановления продолжается 3—6 мес. (реже 1—2 года) и отличается (особенно при тяжелых формах заболевания) тем, что наряду с регенераторными процессами в поврежденных органах длительное время сохраняется повышенная истощаемость и функциональная недостаточность некоторых систем, в первую очередь сердечно-сосудистой, нервной и эндокринной.

Условно выделяют несколько степеней тяжести острой Л.б., отличающихся выраженностью клинических проявлений, сроками латентного периода и отдаленными последствиями: легкую (I). среднюю (II), тяжелую (III) и крайне тяжелую (IV). Первые три степени тяжести характерны для костномозговой формы (синдрома) острой Л.б. и соответственно могут иметь прогноз абсолютно благоприятный, благоприятный и сомнительный (реже неблагоприятный), что зависит также от своевременности рациональной терапии.

При возникновении симптомов заболевания уже в первый час после облучения Л.б., как правило, протекает очень тяжело; при их появлении через 2—3 ч развивается Л.б, средней степени тяжести; при более позднем проявлении Л.б. характеризуется относительно легким течением. Т.о., сроки возникновения первичной реакции (рвоты) могут служить определенным прогностическим признаком тяжести лучевой болезни.

Хроническая лучевая болезнь

Хроническая Л.б. представляет собой сложный клинический синдром, развивающийся при длительном лучевом воздействии в дозах, в 3—5 раз превышающих допустимые для профессионалов. Она характеризуется развитием изменений в различных органах и системах; длительностью и волнообразностью течения, что отражает с одной стороны, проявления повреждений, и с другой — восстановительные и приспособительные реакции. Своеобразием хронической Л.б., возникшей в результате преимущественного воздействия излучения на отдельные органы или ткани, является несоответствие между глубокими изменениями в поврежденных структурах и слабо выраженными и поздно возникающими общими реакциями. Проявления заболевания в доклинической стадии длительное время носят стертый характер.

В ранние сроки при сравнительно малых, но превышающих допустимые дозах общего облучения хроническая Л.б. проявляется многообразными нарушениями нейровисцеральной и, в первую очередь, нейрососудистой регуляции. Позднее возникают признаки функциональной недостаточности, а затем и структурного поражения органов и систем. Постепенно нервно-регуляторные нарушения кровообращения и сердечной деятельности сменяются клинически более выраженной хронической недостаточностью периферического кровообращения. Снижается АД, возникают умеренное расширение границ сердца, приглушение сердечных тонов, изменения ЭКГ, указывающие на развитие нерезких диффузных изменений миокарда. Углубляются изменения в структуре капилляров.

Ранние нестойкие нарушения ферментативной и секреторно-моторной функции желудочно-кишечного тракта по мере утяжеления патологического процесса сменяются более стойким угнетением секреции и кислотности. Восстановительные процессы в эпителии слизистой оболочки выражены отчетливо, и возможна полная нормализация секреторной деятельности и структуры слизистой оболочки желудка даже при относительно высоких дозах излучения.

В отдаленные сроки может иметь место развитие опухолей.

В нервной системе при длительном воздействии излучения возможен неспецифический комплекс регуляторных сдвигов, ранее всего проявляющийся в сфере вегетативно-висцеральной иннервации. Самостоятельного диагностического значения он не имеет. В течение длительного времени наблюдаются легкие функциональные сдвиги в деятельности нервной системы, не нарушающие работоспособности человека. Органические изменения возможны лишь в случаях, когда суммарная доза тотального облучения превышает 3—4 Гр. При хронической Л.б., так же как при острой, наблюдается астенизация соматического характера. Чаще она возникает в результате умственного или физического перенапряжения и проявляется повышенной утомляемостью. Более выраженные состояния астении проявляются, наряду с утомляемостью, раздражительностью, слезливостью, субдепрессивным настроением. Для их развития большое значение имеют исходные особенности личности и социальная мотивация. Возможным компонентом астении является ипохондрия, зависящая как от наличия действительных соматических и психических расстройств, так и связанная с характерологическими особенностями заболевшего и сложными жизненными ситуациями.

Первоначальная неустойчивость числа лейкоцитов при хронической Л.б. сменяется лейко- и нейтропенией, а также тромбоцитопенией вследствие нарушения физиологическая регенерации в белом и мегакариоцитарном ростках костного мозга. Глубокое подавление красного ростка наступает редко в поздние сроки, свидетельствует о серьезном лучевом поражении (при суммарных дозах излучения более 3 Гр). Анемию при хронической Л.б. следует считать неблагоприятным прогностическим признаком. Восстановительные процессы в кроветворной системе по прекращении облучения, как правило, хорошо выражены, даже при значительных суммарных дозах. Вместе с тем напряженность регенерации в кроветворной системе (при дозах более 2 Гр) может способствовать трансформации восстановления в патологическую регенерацию с возникновением лейкозов миелоидного типа (наиболее реальные сроки — 5—10 лет после облучения).


Список литературы.

 

Бобок С.А., Юртушкин В.И. Чрезвычайные ситуации: защита населения и территории. М., 2003.

Борисова В.В. и др. Биологические эффекты при длительном поступлении радионуклидов. М., 1988.

Гозенбук В.Л. и Кеирим-Маркус И.Б. Дозиметрические критерии тяжести острого облучения человека.М., 1988.

Гусысова А.К. и Байсоголов Г.Д. Лучевая болезнь человека. М., 1971.

Медицинские аспекты аварии на Чернобыльской атомной электростанции, под ред. А.Е. Романенко. Киев, 1986.

Острые эффекты облучения человека, сост. А В. Баранова и др., М., 1986.

Яблоков А. Снова о Чернобыле: правда, полуправда и ложь. «Народная воля» от 01.04.2006.

Ярмоненко С.П. Радиобиология человека и животных, М., 1988.


Дата добавления: 2015-08-28; просмотров: 41 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Как вырабатывать уверенность в себе и влиять на людей, выступая публично 14 страница | Выплаты пенсии за праздничные дни января в декабре не будет

mybiblioteka.su - 2015-2024 год. (0.015 сек.)