Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1. Общая характеристика покровных тканей.



 

Слайд 1.

Лекция №3. Покровные ткани

Слайд 2. План лекции.

1. Общая характеристика покровных тканей.

2. Классификация покровных тканей: первичные, вторичные и третичные п.к.

 

Слайд 3. Покровные ткани расположены на границе с внешней средой, т.е. на поверхности органов растения.

Эти ткани предохраняют органы растения от резких температурных колебаний (сильного нагревания или охлаждения), от чрезмерной потери воды, путем испарения, от повреждения каплями дождя, града, твердыми частицами атмосферной пыли, от проникновения внутрь растения болезнетворных организмов. В то же время, покровные ткани осуществляют связь растения с окружающей средой. Покровные ткани относятся к многофункциональным: одна и та же ткань может выполнять функции газообмена, всасывания, защиты от перегрева, выделения и т.д.

Слайд 4. Все выполняемые функции накладывают на строение покровных тканей характерные особенности:

1. Клетки их соединены плотно, без межклетников;

2. Клеточные оболочки (чаще всего наружные) обычно утолщаются и претерпевают различные видоизменения, инкрустируясь суберином, лигнином, кутином, минеральными солями, что повышает их защитные свойства;

3. Для сообщения с внешней средой образуются специальные оформленные структуры в виде устьиц или чечевичек.

Слайд 5. При изменениях возраста органов и их функций, покровные ткани закономерно сменяют одна другую. По происхождению различают первичные (эпидерма, ризодерма, веламен), вторичные (перидерма) и третичные (корка или ритидом) покровные ткани.

 

Слайд 6.Первичные покровные ткани.

Эпидерма (эпидермис, кожица) образуется из поверхностного слоя апикальной меристемы - протодермы. Она покрывает листья, плоды, части цветка и молодые стебли. Кроме защитной функции, эпидерма регулирует процессы транспирации и газообмена, принимает участие в синтезе различных веществ и др. В состав эпидермы входит несколько морфологически различных клеток: основные клетки эпидермы, замыкающие и побочные клетки устьиц, трихомы (выросты эпидермы). Клетки эпидермы живые, имеют ядра, лейкопласты, вакуоли, хлоропласты (только в замыкающих клетках устьиц). Эпидерма у большинства растений однослойная, реже многослойная. Клетки первичной покровной ткани плотно примыкают друг к другу, и не имеют межклетников. Клетки эпидермы нередко имеют извилистые стенки. За счет извилистости стенок увеличивается сила сцепления клеток и дополнительно повышается прочность ткани.



Обычно основные клетки эпидермы прозрачны и не содержат хлоропластов, а если хлоропласты и имеются, то в очень незначительном количестве. Через прозрачные клетки основной ткани беспрепятственно проходят солнечные лучи.

Оболочки клеток кожицы утолщены неравномерно: в каждой клетке наиболее толста наружная стенка, боковые стенки несколько тоньше, внутренние еще более тонки.

 

Слайд 7. Клетки эпидермы обычно покрыты тонкой пленкой - кутикулой. Она представляет собой продукт жизнедеятельности цитоплазмы, клетки, которая выделяет через оболочку на ее поверхность жидкий кутин, затвердевающий в пленку.

 

Слайд 8. Обычно кутикула неоднородна в своем строении и многослойна. Кутикулярные слои нередко пропитаны воском, залегающим в виде включений и прослоек.

Отложения воска на поверхности кутикулы разнообразны и имеют вид: а) мелких зерен, расположенных равномерным слоем; б) чешуек; в) тонких палочек, часто изогнутых и на конце закрученных, например, на стеблях сахарного тростника палочки воска достигают длины 0,1 мм.

Восковой налет снижает интенсивность транспирации у листьев: в опытах листья эвкалипта, с которых осторожно удаляли воск, испаряли воды на 30% больше по сравнению с контрольными.

Восковой покров может иметь и иное значение, особенно для растений теплых дождливых районов. Он делает поверхность органов несмачиваемой и с них легко и быстро стекает вода.

Слайд 9. У насекомоядных растений из рода Nepenthes цветы имеют вид урночек или колпачков. Их поверхность изнутри покрыта мелкими восковыми чешуйками, легко отделяющимися при нажиме лапок насекомых. Даже бескрылые осы, способные ползать по вертикальной поверхности стекла, садясь на окраину урны, не могут удержаться и неизбежно падают на дно.

Эпидерма листьев и стеблей растений, растущих погруженными в воду, почти не имеет кутикулы и, тем более, воскового налета. Чем суше местообитание растения, тем кутикулярная пленка более отчетливо выражена.

Слайд 10. Иногда эпидерма состоит из нескольких слоев клетки. Предполагают, что в этом случае эпидерма выполняет водозапасающую функцию. Поскольку такая эпидерма отмечена преимущественно у тропических растений, произрастающих в условиях непостоянной обеспеченности водой, таких как фикусы, бегонии.

 

Слайд 11. В клетках эпидермы могут образовываться различные продукты жизнедеятельности протопласта. Особенно интересны так называемые цистолиты. Они формируются в гипертрофически разросшихся клетках эпидермы и представляют собой гроздьевидные кристаллы углекислой извести. Клетки с цистолитами представляют собой идиобласты.

Другая особенность внешних стенок клеток эпидермы отдельных растений пропитывание их минеральными солями кальция и кремния. У осок кремний отлагается даже в кутикуле. В некоторых случаях клеточные оболочки приобретают настолько большую прочность, что хвощи, например, в кожице которых отлагается кремнезем, используют для полировки.

Слайд 12. Наличие непрерывного слоя кутикулы лишило бы растения возможности какого-либо газообмена со средой, что неизбежно привело бы его к гибели. Поэтому в процессе эволюции возникли специфические структуры устьица. Через них и осуществляется сообщение с внешней средой. Чем толще кутикула, тем многочисленнее устьица. Через устьица проходит чрезвычайно интенсивная диффузия водяного пара, кислорода и углекислого газа.

Каждое устьице состоит из пары замыкающих клеток и устьичной щели, которая представляет собой межклетник. Замыкающие клетки отличаются от окружающих их обычных эпидермальных клеток своей формой и наличием хлоропластов. Чаще всего замыкающие клетки имеют бобовидную форму. Кроме того, замыкающие клетки обычно имеют более мелкие размеры. Слайд 13.

Слайд 14. Как правило, замыкающие клетки окружены так называемыми побочными клетками устьиц, отличающимися морфологически от основных клеток эпидермы. Побочные клетки функционально тесно связаны с замыкающими и составляют вместе устьичный аппарат (или устьичный комплекс).

По числу и характеру расположения побочных клеток различают следующие типы устьичного аппарата:

1. Аномоцитный – замыкающие клетки окружены побочными клетками, число, форма и расположение которых варьируют;

2. Анизоцитный – замыкающие клетки окружены 3 неравными побочными клетками;

3. Диацитный – устьице снабжено 2 побочными клетками, расположенными одна напротив другой перпендикулярно продольной оси устьичной щели.

4. Парацитный – 2 побочные клетки располагаются параллельно устьичной щели

5. Тетрацитный – состоящий из 4 побочных клеток, 2 из которых расположены параллельно наружным стенкам замыкающих клеток и 2 более крупные занимают полярное положение;

6. Энциклоцитный – в котором замыкающие клетки окружены узким кольцом из 3-4 или большего числа побочных клеток (у папоротников, голосеменных).

Слайд 15. Раскрывание и закрывание устьиц представляет чрезвычайно важное явление в жизни растений. Полностью механизм работы устьичного аппарата был выявлен совсем недавно, но уже со времен Швенденера известно, что основным фактором здесь является изменение тургора (осмотического давления) внутри замыкающих клеток.

Раскрыванию устьиц, кроме того, способствует неравномерно утолщенные оболочки замыкающих клеток. Внутренние стенки, окаймляющие устьичную щель, более толстые, чем наружные. Поэтому при повышении давления в замыкающих клетках наружные стенки изгибаются сильнее и устьичная щель приоткрывается.

Изменение тургорного давления в замыкающих клетках обусловлено изменением в них концентрации ионов калия. Ионы калия закачиваются в замыкающие клетки против градиента концентрации. На это требуется большое количество энергии, поэтому замыкающие клетки содержат многочисленные митохондрии. Углеводы, необходимые для активной деятельности митохондрий, синтезируются хлоропластами.

При высокой концентрации калия вода всасывается в замыкающие клетки, их объем увеличивается и устьице открывается.

Отток ионов калия и соответственно воды совершается пассивно.

Резервуаром ионов калия служат побочные клетки.

В движении устьиц особое значение имеет также и радиальная ориентация целлюлозных микрофибрилл в оболочках замыкающих клеток. Эти радиальные мицеллы позволяют замыкающим клеткам удлиняться и одновременно не дают им расширяться.

Слайд 16. В большинстве случаев устьица в значительно больших количествах расположены на нижней стороне листовых пластинок, чем на верхней. В этом случае устьица не подвержены прямому воздействию солнечных лучей и меньше нагреваются.

Устьица на верхней стороне листа преобладают у травянистых растений, обитающих на сильно нагреваемых каменистых склонах.

И, наконец, у водных растений, таких, как кувшинки, водной лилии, у которых листья расположены на поверхности воды, устьица находятся только на верхней стороне листа.

Таким образом, количество устьиц и их локализация в значительной мере зависит от экологических условий. В среднем на 1мм2 поверхности листа насчитывается 100-300 устьиц.

 

Слайд 17. У огромного большинства высших растений клетки эпидермы образуют выросты - трихомы или волоски (греч. трихос - волосок). К трихомам относятся самые разнообразные выросты эпидермы. Некоторые из них действительно напоминают формой волоски, другие имеют вид сосочков, бугорков, крючочков, чешуек.

Слайд 18. Трихомы бывают железистые и кроющие. В железистых трихомах накапливаются экскреты, поэтому их относят к выделительной системе.

Форма волосков очень разнообразна и характерна для того или иного вида растения. Волоски бывают головчатые, звездчатые, крючковидные, чешуйчатые, ветвистые.

Нередко трихомы защищают растения от насекомых. При этом, чем гуще опушено растение, тем реже насекомые посещают его и используют в качестве пищи и для откладки яиц.

Слайд 19. От трихомов следует отличать эмергенцы (лат. emergere - выдаваться) - структуры, в образовании которых принимает участие не только эпидерма, но и глубже расположенные ткани. У некоторых растений, малин, роз, образуются эмергенцы, называемые шипами. В образовании шипов у шиповника, например, кроме эпидермы участвуют 2 ниже лежащих слоя. От настоящих колючек (метаморфозов органов) эмергенцы отличаются беспорядочным расположением.

 

Слайд 20. Ризодерма (эпиблема) – однослойная наружная ткань молодого корня, несущая корневые волоски. Она покрывает молодые корневые окончания и именно через ризодерму происходит поглощение воды и минеральных солей из почвы. Кроме того, она взаимодействует с микроорганизмами почвы, из корня в почву выделяются вещества, помогающие почвенному питанию. Клетки ризодермы имеют очень тонкие оболочки. У первичной покровной ткани корня нет кутикулы, вследствие чего эти клетки имеют оболочки легко проницаемые для воды. На небольшом расстоянии от кончика корня образуются корневые волоски - выросты ризодермы.

Слайд 21. Веламен, как и ризодерма, происходит из поверхностного слоя апикальной меристемы корня. Веламен (от лат velo - покров) – многослойная, серебристо-белая поверхностная ткань воздушных придаточных корней эпифитов, состоящая из мертвых клеток со спиральными или сетчатыми утолщениями с внутренних сторон оболочек. Эта своеобразная ткань покрывает корни эпифитов и некоторых других растений, приспособленных к жизни на периодически пересыхающих почвах (аспидистра, аспарагус, алоэ, кливия). Веламен от ризодермы отличается многослойностью. Протопласт веламена отмирает и поэтому всасывает воду не осмотическим, а капиллярным путем.

 

Слайд 22. Вторичная покровная ткань – перидерма.

У большинства многолетних растений осевые органы (корень и стебель) неуклонно нарастают в толщину, за счет деятельности вторичных меристем. Но первичная покровная ткань - эпидерма не обладает меристематической активностью и не может следовать за утолщением органов. Под напором образующихся вторичных тканей она разрывается и слущивается. На смену ей приходит сложная вторичная покровная ткань - перидерма.

Начало образованию перидермы кладется формированием вторичной латеральной меристемы - пробкового камбия или феллогена.

На поперечном срезе органа феллоген выглядит в виде кольца плотно сомкнутых тонкостенных клеток, имеющих, как правило, прямоугольные очертания.

Слайд 23. Феллоген работает на две стороны. Наружу он откладывает слои пробки (или феллему), а внутрь органа - живую паренхимную ткань - феллодерму.

Клетки пробки (феллемы) образуют правильные радиальные ряды над производящими их клетками феллогена.

Характерная особенность клеток феллемы - суберинизация их оболочек. Жироподобное вещество суберин откладывается в виде сплошных пластинок, а сами целлюлозные оболочки, кроме этого, нередко одревесневают. Оболочки пробковых клеток могут иметь коричневый или желтый цвет.

Функцию газообмена выполняют чечевички. Поры в клетках пробки развиты слабо. В этом нет необходимости, поскольку живое содержимое в клетках пробки обычно рано отмирает и полости клеток заполняются воздухом.

У некоторых растений в клетках пробки имеется зернистое содержимое, например, белое смолоподобное вещество бетулин у березы или церин в клетках дуба. Предполагают, что эти вещества обладают антисептическими свойствами.

У многих растений, например, у берез, ежегодно образуются новые тонкостенные и толстостенные слои пробки, что-то вроде годичных колец. Именно поэтому береста легко расслаивается.

Мощность феллемы сильно варьирует. Чрезвычайно мощную пробку имеют знаменитые пробковые дубы (бутылочная пробка).

Пробка функционирует в качестве покровной (защитной) ткани. Особенно велика роль пробки у надземных органов. Пробка непроницаема для воды, поэтому предохраняет стволы и ветви от высыхания.

 

Слайд 24. Третичная покровная ткань - ритидом

Корка (ритидом) наружная часть коры многолетних стволов, ветвей и корней, состоящая из омертвевших участков первичной коры и вторичной флоэмы, разделенных перидермами, образуемыми деятельностью неоднократно закладываемых в глубине коры феллогенов.

Слайд 25. По характеру заложения феллогена различают корку кольцевую (виноград, ломонос) и чешуйчатую (дуб, сосна).

Корка защищает дерево от перегрева, испарения воды, вымерзания, солнечных ожогов, повреждения вредителями. Периферические слои корки опадают, и вместе с ними растение освобождается от накопившихся с течением времени вредных продуктов метаболизма. У винограда, земляничного дерева корка опадает ежегодно, у других растений – постепенно.

На следующих слайдах представлено разнообразие покровных тканей в растительном мире.


Дата добавления: 2015-08-27; просмотров: 195 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
«Показательные уравнения и неравенства» Вариант 1 | Все мы читали автобиографический «Праздник, который всегда с тобой». 1 страница

mybiblioteka.su - 2015-2024 год. (0.014 сек.)