Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Принцип работы схемы

Читайте также:
  1. I. 6. ПРИНЦИП ВЕРИФИЦИРУЕМОСТИ
  2. I. Категория: научные работы
  3. I. Общая характеристика работы
  4. I. Схема работы для организации семинарского занятия
  5. II. ВИДЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ
  6. II. Выполнение работы
  7. II. Основные принципы и правила служебного поведения

 

. Конденсатор (без утечки) является идеальным элементом для преобразования приложенного к нему напряжения u 1 (рис. 7) в ток i, изменяющийся пропорционально производной du1/dt.

 

Для получения выходного напряжения, изменяющегося по закону

(26)

достаточно преоб­разовать протекающий в цепи ток i в напряжение.

Это мо­жет быть достигнуто включением в цепь резистора R (рис. 4) настолько малого сопротивления, что закон изменения тока останется почти неизменным (), а создаваемое им падение напряжения будет изменяться по закону, близкому к (26).

При этих условиях неизменности тока напряжение на выходе пренебрежимо мало по сравнению с входным и будет определяться полностью падением напряжения на резисторе R; т.е. при получаем результат дифференцирования входного напряжения:

(27)

Несложный анализ показывает, что условие дифференцирования выполняется тем лучше, чем меньше постоянная времени , хотя при этом меньше полезное напряжение на выходе схемы [3,5].

Действительно, согласно 2-го закона Кирхгофа для этой цепи дифференциальное уравнение имеет вид

(28)

 

Если

(29)

то приближенно

(30)

т.е. схема практически выполняет дифференцирование [5]. Однако, если условие (29) не выполнено, или соотношение (29) противоположное, т.е.

(31)

то из (28) имеем

(32)

Таким образом, при больших схема практически не дифференциру-ет, приближаясь к условию (31) крайне «медленных сигналов»; напротив, при малых схема соответствует условию (29) «быстрых сигналов», т.е. условию качественного дифференцирования [5].

Из вышеуказанного следует, что при выполнении условия (29), при котором

, (33)

достигается достаточная точность дифференцирования, поэтому для качественного дифференцирования импульсных сигналов длительность входного импульса должна быть значительно больше постоянной времени переходного процесса :

(34)

О качестве дифференцирования схемой прямоугольного импульса длительностью t можно судить из графиков для различных соотношений между длительностью импульса и постоянной времени цепи (рис. 9).

Как видно из рис.9, с увеличением реакция цепи в виде выходного напряжения на резисторе (тока через конденсатор) все более приближается по форме к входному импульсу и в дальнейшем цепь становится «переход-ной», т.е. прекращает дифференцирование и пропускает импульс практи-чески без искажений [4].

Для синусоидальных входных напряжений условием дифференцирования согласно (33) должно быть соотношение:

(35)

где - циклическая частота, а - текущая частота синусоидального напряжения, Гц.

Коэффициент передачи дифференцирующей цепи определяется формулой [5]

(36)

и при условии (35) имеет вид

, (37)

где - коэффициент передачи идеального четырехполюсника.

Реакцию цепи на синусоидальное воздействие наглядно отображает АЧХ рис. 10, из которого видно, что при высоких частотах схема не дифференци-рует, удовлетворительное дифференцирование начинается ниже частоты

(38)

и в дальнейшем с ее понижением качество дифференцирования улучшает-ся, т.е. для качественного дифференцирования входная функция не должна содержать высоких частот и их высших гармоник [5].

Из рассмотрения АЧХ рис.10 также можно сделать вывод, что данная цепь может выполнять функцию фильтра верхних частот (ФВЧ) с нижней граничной частотой полосы пропускания :

(39)

т.е. от значения частоты и выше начинается полоса пропускания ФВЧ, а ниже этого значения полоса непропускания, в пределах которой коэффициент передачи уменьшается в вплоть до нуля.

Приближенная длительность полученных двух выходных импульсов при

подаче на вход прямоугольного импульса с длительностью определяется соотношением [3]

, (40)

т.е. интегрирование всегда сопровождается «укорочением» длительности импульса, поэтому в инженерной практике дифференцирующую цепь называют «укорачивающей».

Значение величины 3RC, как и для интегрирующей цепи, обусловлено процессом воздействия на конденсатор электромагнитной энергии входного импульса, при котором имеют место переходные процессы при заряде конденсатора в момент включения импульса и его разряде в момент его отключения. Как выше упомянуто, практическое время заряда и разряда составляет в результате чего на выходе формируются два укороченныхимпульса с различной полярностью, конечной длительностью и конечной амплитудой [3]. В инженерной практике для целей укорочения импульса считают достаточным соотношение

(41)

Временные диаграммы, поясняющие процесс дифференцирования в ДЦ отображены на рис.11.

Рис. 11 Временные диаграммы напряжений дифференцирующей цепи:

а – на входе; б – производной от входного напряжения; в – на выходе

 

При указанных выше условиях дифференцирования аналогичными свойствами обладает дифференцирующая цепь (рис. 6,г).

Действительно, при ток и напряжение определяются соотношениями:

(42)

(43)

т.е. R-L ДЦ (рис.6,г) также выполняет функцию дифференцирования. В формуле (42) - постоянная переходного процесса в ДЦ R-L, показывающая время, в течение которого выходное напряжение убывает в «е» раз. За время ток в цепи (напряжение на резисторе) достигает 0,99 от установившегося значения, т.е. переходный процесс можно считать законченным. Применительно к рис. 11 для этой цепи координата соответствует обозначению .

Дифференцирующие цепи применяются в аналоговых вычислительных устройствах для выполнения математической операции дифференцирования, в импульсной технике для формирования прямоугольных импульсов напря-жения (тока) пилообразной формы и остроконечных импульсов запуска различных устройств цифровой техники, а также в радиотехнических устройствах в качестве звеньев фильтров верхних частот [3,5].

Следует отметить, что с помощью рассмотренных простейших формирую-щих интегрирующих и дифференцирующих цепей принципиально невоз-можно осуществить точные операции интегрирования и дифференцирования, а лишь, как было отмечено выше, приближенные.

Современные дифференцирующие и интегрирующие устройства строятся на основе операционных усилителей, с помощью которых реализуются реальные схемы с хорошим дифференцированием в диапазоне нижних частот и реальные схемы с хорошим интегрированием в диапазоне верхних частот [8].

 


Дата добавления: 2015-12-07; просмотров: 70 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.009 сек.)