Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Линейные уравнения и граничные задачи фильтрации. 4 страница

Читайте также:
  1. A) жүректіктік ісінулерде 1 страница
  2. A) жүректіктік ісінулерде 2 страница
  3. A) жүректіктік ісінулерде 3 страница
  4. A) жүректіктік ісінулерде 4 страница
  5. A) жүректіктік ісінулерде 5 страница
  6. A) жүректіктік ісінулерде 6 страница
  7. A) жүректіктік ісінулерде 7 страница

Если напряжение зависит от времени, но скорость изменения напряжения невелика, структура и температура материала не изменяются, то согласно принципу суммирования повреждений время до разрушения определится из уравнения

, (2.97)

где - долговечность при постоянном напряжении, равном мгновенному значению .

В общем случае критерий разрушения имеет вид

.

Отсюда следует, что в любых условиях механического и теплового воздействия долговечность является функционалом от параметров напряжения, температуры и структуры тела.

В условиях сложного напряженного состояния в уравнениях (2.93) – (2.97) вместо необходимо использовать некоторое приведенное напряжение, в качестве которого чаще всего используется интенсивность напряжения [см. формулу (1.41)].

 

§ 8. ОБЩАЯ СИСТЕМА УРАВНЕНИЙ МЕХАНИКИ ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА

Получить аналитическое решение задачи механики деформируемого твердого тела – значит определить прежде всего компоненты вектора перемещения , тензоров деформаций и напряжения в любой точке области D, занятой телом, и в любой момент времени.

В общем случае, как показано ранее, 15 искомых функций должны удовлетворять следующим 15 уравнениям.

Трем уравнениям движения [см. формулу (2.9)]

. (2.98)

Шести уравнениям механического состояния

(2.99)

соответственно при упругой деформации изотропного тела [см. формулу (2.74)]; при упругопластической деформации изотропного тела [см. формулу (2.77)]; при ползучести среды [см. формулу (2.91)]. Возможны уравнения другого вида, связывающие компоненты и , в зависимости от рассматриваемого состояния тела и действующих факторов.

Шести уравнениям совместимости (неразрывности) деформаций Сен-Венана [см. формулу (1.24)]

(2.100)

и т.д. (остальные уравнения получаются круговой заменой индексов) при рассмотрении кратковременного напряженно-деформированного состояния тела. При изучении ползучести тела используются шесть аналогичных уравнений совместимости скоростей деформаций .

В уравнениях (2.98) – (2.100) использована декартова система координат и следующие введенные ранее обозначения: - проекции массовых сил и ускорения; - плотность тела; - модуль сдвига; - коэффициент Ламе; - модуль объемного сжатия; Е, v – модуль Юнга и коэффициент Пуассона; и - модули пластичности и ползучести, являющиеся соответственно функциями интенсивности деформации сдвига Г и интенсивности скорости деформации сдвига Н (см. лекцию 1); - компоненты девиатора деформации; - объемная деформация; - компоненты девиатора скорости деформации; - символ Кронекера:

где - скорость объемной деформации; и - компоненты тензоров деформаций и скоростей деформаций; связанные соответственно с компонентами перемещения и скорости соотношениями Коши:

(2.101)

При переходе к криволинейной системе координат вид всех уравнений, кроме уравнений (2.99), изменится. В лекции 1 приведены формулы перехода к цилиндрической системе координат.

Для однозначного определения напряженно-деформированного состояния тела к уравнениям (2.98) – (2.100) необходимо присоединить начальное и граничные условия. Различают три основные граничные задачи механики деформируемого твердого тела.

Если на поверхности S, ограничивающей область D тела, задан вектор напряжения , то граничные условия записываются в виде (см. лекцию 1)

(2.102)

где - нормаль к поверхности S; - проекции вектора на оси выбранной системы координат; М – точка поверхности; t – время.

В этом случае говорят о первой основной граничной задаче.

Если на поверхности S заданы условия для компонент вектора перемещения (или скорости )

(2.103)

то говорят о второй граничной задаче, где - известные функции точек поверхности и времени.

В том случае, когда на одной части поверхности S задано условие вида (2.102), а на другой – вида (2.103), говорят о третьей основной граничной задаче, иногда ее называют смешанной граничной задачей.

Отличительная особенность первой основной граничной задачи состоит в том, что ее решение в зависимости от удобства можно строить в перемещениях (скоростях) или в напряжениях. Вторую и третью граничные задачи можно решать только в перемещениях (скоростях).

Решить задачу в перемещениях – значит представить исходную систему уравнений, граничные и начальные условия через функции . Для этого достаточно подставить формулы (2.99) и (2.101) в уравнения (2.98) и граничные условия (2.102), полученная таким образом система трех уравнений и трех граничных условий будет содержать только перемещения . В этом случае надобность в уравнениях (2.100) отпадает. Они могут служить лишь для контроля полученного решения.

Если первая граничная задача решается в напряжениях , то эти функции, кроме уравнений (2.98), должны удовлетворять и системе уравнений (2.100), в которой необходимо (или ) выразить через с помощью формул (2.99).

Ясно, что вид и характер исходной системы уравнений зависит от вида соотношений (2.99). С различными частными системами таких уравнений можно познакомиться по справочной литературе, учебникам и монографиям. При решении конкретных задач мы будем получать эти уравнения в упрощенном виде.

Определение напряженно-деформированного состояния тела не может быть самоцелью. Оно лишь предпосылка для оценки прочности, устойчивости, долговечности тела, конструкции или сооружения.

 

Лекция 3. Основные задачи механики сплошных сред в бурении


Дата добавления: 2015-12-07; просмотров: 41 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.008 сек.)