Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Момент импульса

Читайте также:
  1. I. Организационный момент.
  2. III. Явления ангелов и бесов в момент смерти
  3. IV. Процедура констатації моменту смерті людини
  4. Quot;Вы можете быть всем, чем хотите, вблизи данного момента времени".
  5. А. Одномоментне охоплення усіх контингентів населення, які підлягають профілактиці.
  6. Б. До 30 хвилин з моменту ураження.
  7. В 11 главе Вы описываете переломный момент – изобретение волосяного монтажа усилиями Лена Банна и Дика Уила. Насколько влиятельны были эти две легенды?

Момент импульса материальной точки относительно точки O определяется векторным произведением
, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):
.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.

 

Момент импульса системы тел сохраняется неизменным при любых взаимодействиях внутри системы, если результирующий момент внешних сил, действующих на нее, равен нулю.
Закон сохранения импульса является следствием законов Ньютона, являющихся основными законами динамики. Однако этот закон универсален и имеет место и в микромире, где законы ньютона неприменимы.
Следствия:
1) В случае изменения скорости вращения одной части системы другая также изменит скорость вращения, но в противоположную сторону таким образом, что момент импульса системы не изменится; При движении человека, находящегося на поверхности диска, по окружности с центром, совпадающим с центром масс диска, последний начинает поворачиваться в сторону, противоположную движению человека относительно Земли.
2) Если момент инерции системы в процессе вращения изменяется, то изменяется и ее угловая скорость таким образом, что момент импульса системы останется тем же самым;
3) В случае, когда сумма моментов внешних сил относительно некоторой оси равняется нулю, момент импульса системы относительно этой же оси остается постоянным.
Импульсом тела или количеством движения называют произведение массы тела на его скорость. P – векторная величина. Направление импульса тела совпадает с направлением скорости. Установленные в наше время связи между свойствами пространства и времени и законами сохранения импульса содержались в скрытой форме и в принципах классической механики Галилея – Ньютона. Галилей рассматривал пространство и время как реальности, которые существуют вне человеческого сознания. Открытый им принцип однородности отражал однородность и изотропность пространства. У Ньютона пространство и время абсолютны в том смысле, что свойства пространства не зависят от движущихся в нем тел и протекающих механических явлений, а свойства времени – от движущейся материи. Пространство и время не связаны между собой, они представляют как бы арену, где происходят события. Однородность и изотропность пространства и времени необходимо следуют из законов Ньютонов. В последствии оказалось, что законы Ньютона можно заменить единым постулатом – вариационным принципом, который был удобнее во многих отношениях, в частности, в том, что его можно использовать при формулировке сложных задач. В механике материальной точки этот постулат равноценен законам Ньютона.

Возьмём случай одной материальной точки. Вектор L = [r,mv] называется моментом импульса материальной точки. Производная по времени от этой величины будет формульным выражением, так как векторное произведение векторов dr/dt и v равно нулю. Множитель mdv/dt есть сила F, действующая на материальную точку. Вектор M = [r,F] называют вектором момента силы.

Оно легко обобщается на случай системы материальных точек, где момент импульса системы есть векторная сумма всех Li – моментов импульса отдельных материальных точек системы. В этом случае под M надо пони-мать результирующий момент всех внешних сил, так как результирующий момент внутренних сил равен нулю на основании третьего закона Ньютона. Уравнение и называют законом изменения момента импульса. Для замкнутой механической системы:
Fi = 0, M = 0, L = const.

 

Момент силы

Сила приложенная к твердому телу, которое может вращаться вокруг некоторой точки, создает момент силы. Действие момента силы аналогично действию пары сил.

Момент силы

Момент силы относительно некоторой точки — это векторное произведение силы на кратчайшее расстояние от этой точки до линии действия силы.

Единица СИ момента силы:

1. [M] = Ньютон · метр

Если:
M — момент силы (Ньютон · метр),
F — Приложенная сила (Ньютон),
r — расстояние от центра вращения до места приложения силы (метр),
l — длина перпендикуляра, опущенного из центра вращения на линию действия силы (метр),
α — угол, между вектором силы F и вектором положения r,
То

2. M = F·l = F·r· sin (α)

Момент силыаксиальный вектор. Он направлен вдоль оси вращения.

Направление вектора момента силы определяется правилом буравчика, а величина его равна M.

Аксиальные векторы не связаны с определенной линией действия. Их можно перемещать в пространстве параллельно самим себе (свободные векторы).

 


Дата добавления: 2015-12-08; просмотров: 49 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.006 сек.)