Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вплив температури на швидкість реакцій.

Читайте также:
  1. Взаємодія і зміна літературних напрямів, їх вплив на критику. Значення творчості І. П. Котляревського. Роль фольклористики в активізації суспільного критицизму
  2. Види заохочувальних заходів кримінально-правового впливу
  3. ВИЗНАЧЕННЯ МІНІМАЛЬНОГО ЗНАЧЕННЯ ТЕМПЕРАТУРИ НА ВНУТРІШНІЙ ПОВЕРХНІ
  4. Виховний вплив колективу
  5. Виховний вплив колективу на особистість.
  6. Відмінність покарання та пробації від інших примусових заходів кримінально-правового впливу
  7. Вплив виручки на рівень витрат підприємства

Енергія активації

Як уже зазначалося, умовою елементарного акту взаємодії є зіткнення реагуючих часток. Однак не кожне зіткнення може обумовлювати хімічну взаємодію. Насправді вона передбачає перерозподіл електронної густини, утворення нових хімічних зв’язків і перегрупування атомів. Таким чином, енергія реагуючих часток повинна бути більша за енергію відштовхування (енергетичний бар’єр) між їх електронними оболонками.

Унаслідок перерозподілу енергії частина молекул у системі завжди має певний її надлишок порівняно із середньою енергією молекул. Тому вони можуть подолати енергетичний бар’єр і вступити в хімічну взаємодію. Такі реакційноздатні здатні молекули називають активними.

Різниця між середньою енергією системи і енергією, необхідною для перебігу реакції, називається енергією активації реакції. Вона потрібна для подолання енергетичного бар’єра.

Наявність енергетичного бар’єра є причиною того, що багато реакцій, перебіг яких повністю можливий, самовільно не починаються. Наприклад, вугілля, деревина, нафта, здатні окиснюватися й горіти на повітрі, за звичайних умов не спалахують. Це пов’язано з великою енергією активації відповідних реакцій окиснення. Підвищення температури збільшує кількість активних молекул, тому дедалі більше молекул кисню, вугілля, деревини, нафти набувають необхідного запасу енергії для початку реакції. За певної температури швидкість реакції досягає певної величини, і починається реакція горіння.

Щоб почали утворюватись нові хімічні зв'язки, повинні бути ослаблені або розірвані зв'язки між атомами у вихідних молекулах. Для цього потрібно затратити енергію. Так, у реакції водню з йодом:

Н2 + І2 = 2НІ

під час зіткнення молекул починають подовжуватись зв'язки Н—Н та І—І. Вони послаблюються і тільки тоді утворюються нові зв'язки Н—І. У результаті виникає угруповання, яке називають активованим комплексом або перехідним станом.

Після утворення перехідного стану відбувається процес подальшої побудови нових зв'язків і остаточного розриву вихідних. Хімічне перетворення можна подати у вигляді такої схеми (рис. 16):

 


 

Вихідні речовини ® Перехідний стан ® Продукти реакції

 

Рис. 16. Схема взаємодії водню та йоду

Зміну енергії реагуючих часток під час хімічного перетворення можна відобразити на енергетичній діаграмі, абсцисою якої є координата реакції, пов'язана з між'ядерними відстанями (рис. 17).

 


а б

Рис. 17. Енергетичні діаграми:

а – екзотермічної реакції; б – ендотермічної реакції

 

Таким чином, під час хімічного процесу зміна енергетичного стану Е вих. вихідних речовин на енергетичний стан Е пр. здійснюється через енергетичний бар’єр, який дорівнює енергії активації системи Е 0. При цьому тепловий ефект реакції

D Н = Е пр.Е вих..

Під час ендотермічної реакції енергія продуктів реакції більша, ніж енергія вихідних речовин (рис. 17, б), для екзотермічної - навпаки, енергія про­дуктів менша за енергію вихідних речовин (рис. 17, а). Однак в обох випадках між вихідними речовинами і продуктами реакції утворюється активований комплекс, що має підвищену енергію.

Різницю енергій перехідного стану та вихідних речовин на­зивають енергією активації або потенціальним бар'єром реакції.

Отже, у процесі хімічного перетворення можуть бути задіяні не всі молекули, а тільки так звані активні, тобто ті, що мають енер­гію, достатню для утворення перехідного стану.

Енергія активації D Е акт. – важлива характеристика хімічних перетворень. Саме вона затримує чи робить неможливими багато реакцій, які з позиції термодинаміки можуть відбуватися самочинно.

Таким чином, існування більшості молекул, кристалічних речовин і навіть живих клітин можливе тому, що процеси їх перетворення і руйнування пов’язані з подоланням значного енергетичного бар’єра.

Підвищення температури реагуючих часток унаслідок зростання швидкості молекул зумовлює збільшення загальної енергії системи і відповідно відносного вмісту активних молекул, що рівноцінно зростанню швидкості хімічної реакції. Вплив температури й енергії активації на швидкість хімічних реакцій можна виразити за допомогою залежності константи швидкості реакції k від температури Т і енергії активації, яка має назву рівняння Арреніуса:

,

або у логарифмічній формі ,

де А – множник Арреніуса, чи частотний фактор, пропорційний числу зіткнень молекул.

Якщо концентрації реагуючих речовин дорівнюють 1 моль/л, то рівняння Арреніуса дає можливість виразити залежність швидкості реакції від температури:

v .

Оскільки в рівнянні температура входить у показник степеня, то швидкість хімічних реакцій значною мірою залежить від зміни температури.

Експериментально встановлено, що залежність швидкості хімічної реакції від температури можна виразити у вигляді емпіричного правила Вант-Гоффа: із підвищенням температури на кожні 10 градусів швидкість реакції зростає в 2 -4 рази.

У математичній формі правило Вант-Гоффа записується так:

,

де D t – різниця (зростання) температур; v1 – швидкість реакції до підвищення температури; v2 – швидкість реакції після підвищення температури (при температурі t 2); g - температурний коефіцієнт швидкості реакції (g=2…4).

Температурний коефіцієнт вказує, у скільки разів зросте швидкість реакції, якщо температура підвищиться на 10 градусів.

Каталіз

Каталізатор — це речовина, якабере участь у проміжних стадіях реакції, прискорює її, але не входить до складу продуктів реакції і по її закінченні залишається незмінною.

Каталізатори мають величезне значення під час промислових і лабораторних хімічних процесів, а також хімічних реакцій, що відбувають­ся в живих організмах, атмосфері, гідросфері. Так, у листках рослин під дією особливих каталіза­торів - ферментів - вуглекислий газ, вода й поглинуте сонячне світло синтезують різноманітні складні органічні сполуки. В організмі людини за участю ферментів відбуваються складні процеси перетворення хімічних сполук, що забезпечу­ють його життєдіяльність. Ферменти відіграють важливу роль у харчовій промисловості, в окремих випадках здійснюють чи допомагають здійснювати багато технологічних процесів, а в інших – ускладнюють їх проведення. Зокрема, перетворення вихідної сировини в таких галузях харчової промисловості, як виробництво вина, пива, спирту, хліба, ряду кисломолочних продуктів, здійснюється за безпосередньої участі ферментів.

Швидкість реакції істотно залежить від енергії активації, причому зменшення останньої (потенціального бар'єра) забезпечує зростання швидкості. Здебільшого дію каталізаторів пояснюють тим, що вони знижують енергію активації. Схема, що відображає різницю енергій активації стадій каталітичного процесу і процесу, який відбувається без каталізатора, наведена далі (рис. 18).

За наявності каталізатора виникають інші активовані ком­плекси, для утворення яких потрібна менша енергія, ніж для утворення активованих комплексів без каталізатора. Наприклад, якщо деякій реакції

А + В = АВ (E a)

Рис. 18. Зміна енергії активації
відповідає певна енергія активації Еа,то за наявності каталіза­тора Кречовина Аспочатку утворює з

ним нестійку сполуку:

А + К = А...К (Е 'а),

яка далі реагує з речовиною В з виділенням каталізатора Кі утворенням кінцевого продукту:

А...К + В = АВ + К (Е а).

Енергія активації проміжних стадій (Е' ата Е' а ) менша за енергію активації реакції, яка відбувається без каталізатора, тому більша частка молекул матиме достатню енергію для утворення активованих комплексів, що виникають за наявності каталізатора.

Розрізняють два види каталізу — гомогенний і гетерогенний. Під час гомогенного каталізу каталізатор і речовини, які беруть участь у реакції, утворюють одну фазу (газ або розчин). Під час гетерогенного каталізу каталізатор перебуває в системі у ви­гляді самостійної фази.

Реакція

2О2 = 2Н2О + О2,

яка відбувається у водному розчині, прискорюється в разі дода­вання іонів ОН- (розчину лугу), вільного Вr2 або твердого МnО2, тобто для однієї тієї самої реакції можливий і гомогенний, і гетерогенний каталіз.


Дата добавления: 2015-12-08; просмотров: 114 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.01 сек.)