Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

№ 01 Качественные особенности живой материи. Принципы организации во времени и пространстве. Уровни организации живого. 2 страница



 

№19 Кариотип и идиограмма человека. Характеристика кариотипа человека в норме.

Кариотип (от карио... и греч. typos - отпечаток, форма), типичная для вида совокупность морфологических признаков хромосом (размер, форма, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе кариосистематики. Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.

У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование кариотипа проводится с помощью метода, называемого цитогенетика.

Идиограмма (от греч. idios - свой, своеобразный и...грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами.

Кариограмма (от карио... и... грамма), графическое изображение кариотипа для количественной характеристики каждой хромосомы. Один из типов К. - идиограмма - схематическая зарисовка хромосом, расположенных в ряд по их длине (рис.). Др. тип К. - график, на котором координатами служат какие-либо значения длины хромосомы или её части и всего кариотипа (например, относительная длина хромосом) и так называемый центромерный индекс, т. е. отношение длины короткого плеча к длине всей хромосомы. Расположение каждой точки на К. отражает распределение хромосом в кариотипе. Основная задача кариограммного анализа - выявление гетерогенности (различий) внешне сходных хромосом в той или иной их группе.

№20 Наследование групп крови. Резус фактор. Резус-конфликт.

Наследование групп крови.

В основе закономерностей наследования групп крови лежат следующие понятия. В локусе гена АВО возможны три варианта (аллеля) - 0, A и B, которые экспрессируются по аутосомно-кодоминантному типу. Это означает, что у лиц, унаследовавших гены А и В, экспрессируются продукты обоих этих генов, что приводит к образованию фенотипа АВ (IV). Фенотип А (II) может быть у человека, унаследовавшего от родителей или два гена А, или гены А и 0. Соответственно фенотип В (III) - при наследовании или двух генов В, или В и 0. Фенотип 0 (I) проявляется при наследовании двух генов 0. Таким образом, если оба родителя имеют II группу крови (генотипы AА или А0), кто-то из их детей может иметь первую группу (генотип 00). Если у одного из родителей группа крови A(II) с возможным генотипом АА и А0, а у другого B(III) с возможным генотипом BB или В0 - дети могут иметь группы крови 0(I), А(II), B(III) или АВ (IV).



Наследование резус-фактора.

Наследование резус-фактора кодируется тремя парами генов и происходит независимо от наследования группы крови. Наиболее значимый ген обозначается латинской буквой D. Он может быть доминантным - D, либо рецессивным - d. Генотип резус-положительного человека может быть гомозиготным - DD, либо гетерозиготным - Dd. Генотип резус-отрицательного человека может быть - dd.

Резус конфликт.

Гемолитическая болезнь плода и новорожденного это состояние, возникающее в результате несовместимости крови матери и плода по некоторым антигенам. Наиболее часто гемолитическая болезнь новорожденного развивается вследствие резус-конфликта. При этом у беременной женщины резус-отрицательная кровь, а у плода резус-положительная. Во время беременности резус-фактор с эритроцитами резус-положительного плода попадает в кровь резус-отрицательной матери и вызывает в ее крови образование антител к резус-фактору (безвредных для нее, но вызывающих разрушение эритроцитов плода). Распад эритроцитов приводит к повреждению печени, почек, головного мозга плода, развитию гемолитической болезни плода и новорожденного. В большинстве случаев заболевание быстро развивается после рождения, чему способствует поступление большого количества антител в кровь ребенка при нарушении целостности сосудов плаценты.

№21 Закон Моргана. Хромосомная теория наследственности. Полное и неполное сцепление генов.

 

Закон Моргана.

Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья (на рисунке самка), с мушкой, обладающей тёмной окраской и зачаточными (короткими) крыльями (на рисунке самец), то в первом поколении гибридов все мухи будут серыми с нормальными крыльями (А). Это гетерозиготы по двум парам аллельных генов, причём ген, определяющий серую окраску брюшка, доминирует над тёмной окраской, а ген, обуславливающий развитие нормальных крыльев, - доминирует над геном недоразвыитых крыльев.

При анализирующем скрещивании гибрида F1 с гомозиготной рецессивной дрозофилой (Б) подавляющее большинство потомков F2 будет сходно с родительскими формами.

Это происходит потому, что гены, отвечающие за серое тело и нормальные крылья - Сцепленные гены, также как и гены, отвечающие за тёмное тело и короткие крылья, т.е. они находятся в одной хромосоме. наследование сцепленных генов называют - сцепленное наследование.

Сцепление может нарушаться. Это доказывают особи В и Г на рисунке, т. е. если бы сцепление не нарушалось, то этих особей бы не существовало, однако они есть. Это происходит в результате кроссинговера, который и нарушает сцепленность этих генов.

Хромосомная теория наследственности.

1. Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;

2. Каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

3. Гены расположены в хромосомах в определенной линейной последовательности;

4. Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

5. Сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинантных хромосом;

6. Частота кроссинговера является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);
7. Каждый вид имеет характерный только для него набор хромосом - кариотип.

Полное и неполное сцепление генов.

Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть: полным, если между генами, относящимися к одной группе сцепления, рекомбинация невозможна и неполным, если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

 

 

№22 Взаимодействие неаллельных генов: комплементарность, эпистаз, полимерия (примеры).

Взаимодействия неаллельных генов.

1. Комплементарность. Этот вид взаимодействия генов заключается в том, что при наличии двух доминантных аллелей разных генов появляется новый признак, то есть для появления нового признака у организма должен быть генотип АВ. Так, для развития окраски необходимо, чтобы в организме синтезировались определенные белки и ферменты, превращающие их в пигмент. Классическим примером является наследование окраски цветков у душистого горошка.

2. Эпистаз. При эпистатическом взаимодействии одна пара генов может подавлять действие другой пары генов. Например, у лошадей масть определяется двумя парами генов. В одной паре генов доминантный аллель А определяет серую окраску (раннее поседение). Этот доминантный ген подавляет действие не только аллельного ему рецессивного гена а, но и подавляет проявление другой пары генов, определяющих масть (вороную, рыжую, гнедую), вне зависимости от того, является эта пара рецессивной или доминантной гомозиготой или гетерозиготой - окраска лошади будет только серой (лошади с генотипами ААвв, Аавв, ААВВ, АаВВ или АаВв).

3. Полимерия. Многие признаки определяются несколькими парами генов. Это характерно, в основном, для количественных признаков, таких как яйценоскость у кур, жирность молока у коров.

4. Плейотропное действие гена. При плейотропном действии гена один ген определяет развитие или влияет на проявление нескольких признаков. Это свойство генов было хорошо исследовано на мышах. Из схемы, видно, что ген определяет несколько признаков и признак определяется несколькими генами, поэтому можно сделать вывод, что плейотропное действие гена неразрывно связано с полимерным взаимодействием генов.

5. Летальные гены. Летальность генов - одна из разновидностей плейотропного действия гена. Так один ген, определяющий какой-либо признак, влияет так же на жизнеспособность в целом.

Ярким примером летальности гена служит ген платиновости у лисиц.

 

№23 Значение генетики для медицины. Цитологический, биохимический, популяционно-статистический методы изучения наследственности.

Генетика – это наука о закономерностях наследственности и изменчивости организмов. Генетика разрабатывает методы управления этими процессами. Она включает ряд отраслей – генетика микроорганизмов, растений, животных, человека. Методы генетики используются, например, в медицине (медицинская генетика). Генетика тесно связана с молекулярной биологий, цитологией, эволюционным учением, селекцией.

Результаты, полученные в генетических исследованиях, имеют огромное значение для медицины, генной инженерии, биотехнологии и других областей.
В разных отделах генетики применяют различные методы: гибридологический в генетике растений, генеалогический, близнецовый, цитогенетический, биохимический – в генетике человека и т.д.

Цитологический метод.

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.

Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.

Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями.

Биохимический метод.

Наследственные заболевания, которые обусловлены генными мутациями, изменяющими структуру или скорость синтеза белков, обычно сопровождаются нарушением углеводного, белкового, липидного и других типов обмена веществ. Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма (крови, моче, поте и т.д.). Например, анализ аминокислотных последо- вательностей мутационно измененных белковых цепей гемоглобина позволил выявить несколько наследственных дефектов, лежащих в основе ряда заболеваний, — гемоглобинозов. Так, при сер- повидно-клеточной анемии у человека аномальный гемоглобин вследствие мутации отличается от нормального заменой только одной аминокислоты (глутаминовой кислоты на валин).

Популяционно-статистический метод.

Распространение отдельных генов в человеческих популяциях изучают с помощью популяционно-статистического метода, который позволил установить следующее.

Большинство генов распространены повсеместно и относительно легко выявляются. К ним относятся, например, гены, дефекты в которых приводят к заболеванию фенилкетонурией, некоторыми формами слабоумия.
В то же время есть гены, встречающиеся локально, то есть преимущественно в определенных районах. Например, ген, определяющий серповидноклеточную анемию, распространен в Южной и Экваториальной Африке и

Средиземноморье.
Популяционно-статистический метод позволяет определить генетическую структуру популяции человека, а это необходимо для профилактической медицины.

 

№24 Структурные нарушения (аберрации) хромосом. Классификация в зависимости от изменения генетического материала. Механизм возникновения. Значение для биологии и медицины. Примеры.

 

Абберации.

Несмотря на эволюционно отработанный механизм, позволяющий сохоанить постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений, под влиянием различных воздействий эта организация может изменяться. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение её целостности – разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или абберациями.

При хромосомных аберрациях происходят внутри хромосомные перестройки:
- теряется участок хромосомы; или
- удваивается участок хромосомы (ДНК-дупликация); или
- переносится участок хромосомы с одного на другое место; или
- сливаются участки разных (негомологичных) хромосом или целые хромосомы.

Делеция — это утрата хромосомой некоторого участка, который затем обычно уничтожается: А. Б. В. Г. Д. Е - А. Б. В. Г. Д.

В гомозиготном состоянии делеции обычно легальны, поскольку утрачивается довольно большой объем генетической информации.

Дупликация — удвоение участка хромосомы. А. Б. В. Г. Д - А. Б. В. Б. В. Г. Д

Эти мутации часто возникают вследствие нарушения обмена участков между гомологичными хромосомами при конъюгации. Дупликации не обязательно наносят вред организму. В ряде случаев они позволяют увеличить набор генов, повышая генетическое богатство популяции.

Инверсия — поворот отдельного фрагмента хромосомы на 180°; при этом число генов в хромосоме остается прежним, а изменяется лишь их последовательность. Несмотря на кажущуюся “безобидность” такого преобразования, оно может являться причиной нарушения процесса конъюгации (образование бивалента) во время мейоза, действуя как “ингибитор кроссинговера”, а в некоторых случаях приводя к формированию нежизнеспособных гамет. А. Б. В. Г. Д. Е - А. Б. Д. Г. В. Е.

Транслокация — обмен участков между негомологичными хромосомами.
А, Б, В. Г, Д. К. Л. М. Г. Д. К. Л. М. Н. О. А. Б. В. Н. О.

В результате транслокации изменяются группы сцепления и нарушается гомологичность хромосом. Гетерозиготы по транслокациям частично стерильны — обладают пониженной плодовитостью — вследствие ненормального протекания коньъюгации в процессе образования гамет.
Транспозиция — перемещение небольшого участка внутри одной хромосомы.
А. Б. В. Г..... М. Н. О. - А. Б. В. М. Г..... Н. О.

 

№25 Хромосомный механизм наследования пола. Цитогенетические методы определения пола. Наследование сцепленное с полом. Примеры.

 

Хромосомный механизм определения пола.

В клетках организмов содержится двойной набор гомологичных хромосом, которые называют аутосомами, и две половые хромосомы. В клетках женских особей содержатся две гомологичные половые хромосомы, которые принято обозначать XX. В клетках мужских особей половые хромосомы не являются парными – одна из них обозначается X, а другая Y. Таким образом, хромосомный набор у мужчин и женщин отличается одной хромосомой. У женщин в каждой клетке тела (кроме половых) 44 аутосомы и две половые хромосомы XX, а у мужчины – те же 44 аутосомы и две половые хромосомы Х и Y. При формировании половых клеток происходит мейоз и число хромосом в сперматозоидах и яйцеклетках уменьшается в два раза. У женщин все яйцеклетки имеют одинаковый набор хромосом: 22 аутосомы и X-хромосома. У мужчин образуются два вида сперматозоидов в соотношении 1:1 – 22 аутосомы и Х- или 22 аутосомы и Y-хромосома. Если при оплодотворении в яйцеклетку проникнет сперматозоид, содержащий Х-хромосому, появится зародыш женского пола, а если сперматозоид, содержащий Y-хромосому, – образуется зародыш мужского пола.

Таким образом, определение пола у человека, других млекопитающих, дрозофилл, зависит от наличия или отсутствия Y-хромосомы в сперматозоиде, оплодотворяющем яйцеклетку. Противоположная картина наблюдается у птиц и многих рыб: XY – набор половых хромосом самок, а XX – самцов. У некоторых насекомых, например, пчел, самки имеют XX-хромосомы, а у

самцов только одна половая хромосома X, а парная ей отсутствует. Следовательно, в мире животных хромосомное определение пола может различаться.

Цитогенетический метод определения пола.

Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека. Сейчас используют метод дифференциального окрашивания хромосом, который позволяет точно идентифицировать хромосомы по характеру распределения в них окращшиваемых сегментов.

 

Наследование сцепленное с полом.

Половые хромосомы Х и Y содержат большое количество генов. Наследование определяемых ими признаков называют наследованием, сцепленным с полом, а локализацию генов в половых хромосомах называют сцеплением генов с полом.
Например, Х-хромосома человека содержит доминантный ген Н,

пределяющий свертывание крови. У человека, рецессивно гомозиготного по этому признаку, развивается тяжелое заболевание гемофилия, при котором кровь не сворачивается и человек может погибнуть от малейшего повреждения сосудов. Так как в клетках женщин две Х-хромосомы, то наличие в одной из них гена h не влечет за собой заболевания, так как во второй из них присутствует доминантный ген Н. В клетках мужчин есть только одна Х-хромосома. Если в ней присутствует ген h, то у мужчины разовьется гемофилия, так как Y-хромосома не гомологична Х-хромосоме и в ней нет гена Н или h.

 

 

 

№ 26 Наследственность и изменчивость – фундаментальные свойства живого.

 

Наследственность и изменчивость.

Наследственность – это свойство организмов передавать следующему поколению свои признаки и особенности развития, т.е. воспроизводить себе подобных. Наследственность – неотъемлемое свойство живой материи. Она обусловлена относительной стабильностью (т.е. постоянством строения) молекул ДНК.

Изменчивость — общее свойство организмов приобретать новые признаки в процессе онтогенеза. Ненаследственная, или модификационная, и наследственная (мутационная и комбинативная) из менчивость. Примеры ненаследственной изменчивости: увеличение массы человека при обильном питании и малоподвижном образе жизни, появление загара; примеры наследственной изменчивости: белая прядь волос у человека, цветок сирени с пятью лепестками.

Фенотип — совокупность внешних и внутренних признаков, процессов жизнедеятельности организма. Генотип — совокупность генов в организме. Формирование фенотипа под влиянием генотипа и условий среды. Причины модификационной изменчивости — воздействие факторов среды. Модифика-ционная изменчивость — изменение фенотипа, не связанное с изменениями генов и генотипа.
Особенности модификационной изменчивости — не передается по наследству, так как не затрагивает гены и генотип, имеет массовый характер (проявляется одинаково у всех особей вида), обратима — изменение исчезает, если вызвавший его фактор прекращает действовать. Например, у всех растений пшеницы при внесении удобрений улучшается рост и увеличивается масса; при занятиях спортом масса мышц у человека увеличивается, а с их прекращением уменьшается.

Комбинативная изменчивость.

Комбинативная изменчивость заключается в перегруппировке генов в процессе полового размножения. Таким образом, источником комбинативной изменчивости служит скрещивание. Отдельные особи любой популяции всегда отличаются друг от друга по генотипу. В результате свободного скрещивания возникают новые комбинации генов. Эти новые комбинации сами по себе не приводят к образованию новых популяций или тем более подвидов, но они являются необходимым материалом для отбора и эволюционных изменений. Разнообразные сочетания генов в генотипе возникают на различных этапах процесса размножения:

-во-первых, при перекресте хромосом (кроссинговере) в профазе первого деления мейоза, когда гомологичные хромосомы могут
обмениваться аллельными генами;

-во-вторых, при случайном расхождении гомологичных хромосом в анафазе первого деления мейоза,

-в третьих, во время случайного расхождения хроматид в анафазе второго деления мейоза.

Кроме того, огромное количество комбинаций генов возникает при оплодотворении, то есть при слиянии половых клеток. Все эти изменения в геноме хоть и не изменяют самих генов, но создают гигантское множество разнообразных генотипов, являющееся мощной основой для эволюционного процесса.

Мутационная изменчивость.

Мутационная изменчивость наблюдается при изменениях генотипа, то есть при мутациях.
Передача генетического материала от родителей потомству должна происходить очень точно, иначе виды сохраниться не могут. Однако, иногда происходят количественные или качественные изменения в ДНК, и дочерние клетки получают искаженный по сравнению с родительскими набор генов.
Такие ошибки в наследственном материале передаются следующему поколению и называются мутациями.

 

 

№ 27 Первый и второй законы Менделя. Менделирующие признаки человека.

 

Первый закон Менделя (единообразия гибридов) – при скрещивании гомозиготных родительских особей, которые отличаются по одной паре аллельных признаков, все гибриды первого поколения единообразны по фенотипу и генотипу.

Второй закон Менделя (расщепления гибридов второго поколения) – при моногибридном скрещивании гетерозиготных организмов у гибридов второго поколения происходит расщепление по фенотипу в отношении 3:1 и по генотипу – 1:2:1

Закон чистоты гамет - у гетерозиготной особи половые клетки «чисты», т.е. несут по одному гену из каждой аллельной пары.

Цитологические основы законов Менделя базируются на:

1) парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака)

2) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным пблюсам клетки, а затем и в разные гаметы)

3) особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары)

Признаки, наследование которых следует закономерностям, установленным Г. Менделем, называются менделирующими. Общее количество их, известных к 1975 г., составило более 2300. Все менделирующие признаки дискретны и контролируются моногенно, т. е. одним геном. Например, цвет глаз, форма носа, тип волос, форма ушей и т.д.

№28 Гипотеза «чистоты гамет». Следствия из гипотезы. Аутосомно - доминантный и аутосомно-рецесивный типы наследования.

 

Закон чистоты гамет - у гетерозиготной особи половые клетки «чисты», т.е. несут по одному гену из каждой аллельной пары. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом. Это явление основано на парности отдельных генов. Особь, гетерозиготная по какому-либо признаку, имеет в ядрах соматических клеток в одной из гомозиготных хромосом доминантный аллель гена, а в другой - рецессивный.

Аутосомно-доминантный тип наследования - классические примеры доминантного наследования – способность свертывать язык в трубочку и «свисающая» (свободная) мочка уха. Альтернативой последнему признаку является срощенная мочка – признак рецессивный. Еще одна наследственная аномалия у человека, обусловленная аутосомно-доминантным геном, – многопалость, или полидактилия. Она известна с глубокой древности. На картине Рафаэля «Сикстинская Мадонна» слева от Марии – папа римский Сикст II, на левой руке у него 5 пальцев, а на правой – 6. Отсюда и его имя: сикст это шесть.

Аутосомно-рецессивный тип наследования - у человека описано очень много не сцепленных с полом признаков, которые наследуются как рецессивные. Например, голубой цвет глаз проявляется у людей, гомозиготных по соответствующему аллелю. Рождение голубоглазого ребенка у родителей с карими глазами повторяет ситуацию анализирующего скрещивания – в этом случае ясно, что они гетерозиготны, т.е. несут оба аллеля, из которых внешне проявляется только доминантный. Признак рыжих волос, определяющий еще и характер пигментации кожи, также является рецессивным по отношению к нерыжим волосам и проявляется только в гомозиготном состоянии.

№ 29 Онтогенез и его периодизация. Прямое и непрямое развитие.

 

Под онтогенезом понимают совокупность процессов развития особи (индивидуального развития), начиная от стадии зиготы до конца жизни (смерть или деление одноклеточного организма).

Периодизация онтогенеза затрудняется сложностью самого процесса развития, его неравномерностью (проявляющейся в разном темпе развития и созревания функций в разные фазы онтогенеза), а также гетерохронностью созревания и развития.Вследствие неравномерности, гетерохронности и различия индивидуальныхтемпов развития и созревания граница между стадиями не может бытьточечной, а занимает некоторый временной интервал. причем индивидуальныеразличия нарастают в онтогенезе от ранних фаз к более поздним.Вариативность данных увеличивается по мере подъема от генетического уровня к социальному.

Различают прямое развитие и развитие с превращением (метаморфозом). При прямом развитии родившийся организм является уменьшенной копией взрослой особи, с небольшими отличиями. В этом случае в ходе постэмбрионального развития организм только растет и достигает половой зрелости. При развитии с превращением рождается личинка, устроенная иначе, чем взрослый организм. (Например, гусеницы - личинки бабочек - совершенно не похожи своим строением на взрослых насекомых). Многие органы личинки отсутствуют у взрослой особи. Вырастая, личинка проходит метаморфоз - часть ее органов отмирает, зато развиваются новые органы, свойственные новому организму. Так у земноводных личинкой является головастик, во многих чертах строения сходный с рыбой. В ходе головастик теряет хвост, жабры, приобретает конечности. Иногда личинка может быть устроена значительно сложнее, чем взрослая особь. Например, у морских животных из подтипа личиночнохордовых (асцидий) личинка имеет хорду, развитую нервную систему и свободно плавает в толще воды. Взрослая асцидия не имеет ни хорды, ни сложной нервной системы, плавать не способна и всю жизнь проводит, прикрепившись на дне моря.

№ 30 Общая характеристика эмбрионального развития: дробление, гаструляция, гисто- и органогенез..

 

В процессе эмбриогенеза можно выделить следующие основные стадии:

1. Оплодотворение ~ слияние женской и мужской половых клеток. В результате образуется новый одноклеточный организм-зигота.

2. Дробление. Серия быстро следующих друг за другом делений зиготы. Эта стадия заканчивается образованием многоклеточного зародыша, имеющего у человека форму пузырька-бластоцисты, соответствующей бластуле других позвоночных.

3. Гаструляция. В результате деления, дифференцировки, взаимодействия и перемещения клеток зародыш становится многослойным. Появляются зародышевые листки эктодерма, энтодерма и мезодерма, несущие в себе накладки различных тканей и органов.

4. Гистогенез, органогенез, системогенез. В ходе дифференцировки зародышевых листков образуются зачатки тканей, формирующие органы и системы организма человека.

Различают оплодотворение наружное (например, у амфибий) и внутреннее (у птиц, млекопитающих, человека), а также полиспермное, когда в яйцеклетку проникают несколько спермиев (например, у птиц) и моноспермное (у млекопитающих, человека).

Дробление зиготы зависит от типа яйцеклетки, от количества желтка и его распределения. Различают следующие типы дробления:

1. Полное, равномерное (у первично изолецитальных яйцеклеток ланцетника, Полностью дробится зигота на равные части - бластомеры.

2. Полное, неравномерное (у мезолецитальных яйцеклеток амфибий). Зигота дробится полностью, но бластомеры образуются неодинаковые (мелкие на анимальном полюсе и крупные на вегетативном, где сосредоточен желток).

3. Частичное или меробластическое (у полилецитальных яйцеклеток птиц). Дробится лишь часть анимального полюса яйцеклетки, свободного от желтка.

4.Полное неравномерное,асинхронное (у вторично изолецитальных яйцеклеток плацентарных млекопитающих и человека).

Дробление характеризуется появлением борозд дробления: меридианных широтных и тангенциальных, параллельных поверхности дробления. Чем больше желтка содержит яйцеклетка, тем менее полно и равномерно происходит дробление. В результате дробления зародыш становится многоклеточным - бластулой. Бластула имеет стенку - бластодерму, состоящую из клеток - бластомеров и полость - бластоцель, заполненную жидкостью, продуктом секреции бластомеров. В бластодерме различают крышу, образовавщуюся за счет анимального полюса, дно - из материала вегетативного полюса и краевую зону, расположенную между ними. Светлые бластомеры обрастают кучку темных бластомеров и дробящийся зародыш приобретает вид плотного шара – морулы.. Зародышевый узелок, уплощаясь, преобразуется в зародышевый щиток, подготавливаясь к первой фазе гаструляции

Гаструляция также является критическим периодом в развитии. Она приводит к образованию многослойного зародыша (гаструла), Способы образования гаструлы различны:

1. Инвагинация-впячивание (у ланцетника).

2. Эпиболия-обрастание (у амфибий эпиболия идет совместно с частичной инвагинацией).

3. Деляминация - расщепление (у птиц, млекопитающих, человека).

4. Иммиграция - выселение, перемещение (у птиц, млекопитающих, человека).

 

В зародыше хордовых вслед за этим наступает стадия нейрулы – формируется осевой комплекс, состоящий из хорды и нервной пластинки, расположенных параллельно друг другу. Хорда возникает из энтодермы (точнее, из хорды мезодермы), а нервная пластинка – из эктодермы. В дальнейшем идет дифференцировка клеток: из эктодермы образуются покровный эпителий, эмаль зубов, нервная система, органы чувств. Из энтодермы – эпителий кишечника, пищеварительные железы, легкие. Из мезодермы – скелет, мышцы, кровеносная система, выделительные органы, половая система. У всех животных и у человека одни и те же зародышевые листки формируют одни и те же органы и ткани. Это является свидетельством того, что зародышевые листки гомологичны и имеют единое происхождение в эволюции. Дальнейшее развитие зародыша идет в строгой зависимости одних органов от других (закон эмбриональной индукции Г.Шпемана).

 

№ 33 Популяция. Генетическая и экологическая структура популяции.

В природе практически не существует видов, которые были бы повсеместно распространены. Обычно каждый вид имеет свою область распространения - ареал, границы которого определяются границами пригодных для данного вида условий обитания. Космополитами - видами, обитающими повсеместно - являются прежде всего человек, сумевший освободиться из-под влияния окружающей среды, и (с определенной долей условности) некоторые обитающие совместно с ним животные.

Границы ареалов видов со временем изменяются. Как правило, это связано с изменением условий существования, а также с адаптацией видов к новой среде обитания. В настоящее время ареалы многих видов меняются под влиянием хозяйственной деятельности человека. При этом ареал может сокращаться или расширяться.

Условия среды определяют не только границы ареала, но и закономерности размещения особей в пределах этих границ. Как правило, внутри своего ареала животные, растения грибы или микроорганизмы распределены неравномерно: можно выделить отдельные «сгущения» - популяции.

Популяция - совокупность особей того или иного вида, в течение большого числа поколений населяющих определенное пространство, внутри которого особи могут относительно свободно скрещиваться друг с другом, в то время как обмен особями с соседними популяциями в значительной мере затруднен.

Генетическую структуру популяции мы можем описать, определив частоты генотипов в ее генофонде. Для этого нам нет необходимости обследовать всех особей этой популяции. Биологи, как правило, анализируют выборку особей из популяции. Чем больше эта выборка, тем точнее она представляет реальное соотношение частот генотипов в популяции. В качестве материала используются полевые наблюдения, данные лабораторных анализов полевых сборов или музейных экземпляров и даже архивные данные.

Сравнение разных популяций по частотам аллелей дает нам информацию о генетической гетерогенности видов в разнообразных условиях его обитания. Обратите внимание, что частота аллеля черной окраски в островных популяциях значительно выше, чем в континентальных. Причину этих различий между островными и континентальными популяциями мы обсудим позже, а пока проанализируем соотношение частот генотипов внутри популяций.

Популяцию рассматривают в качестве структурной единицы вида и единицы эволюции.
Каждая популяция характеризуется определенной численностью особей, ее изменениями, занимаемым пространством, возрастным и половым составом особей.
Территория, занимаемая разными популяциями одного вида, а тем более различных видов, очень колеблется и зависит от степени подвижности особей. Число особей (или численность) в популяции различна у разных видов, но она не может быть ниже некоторых пределов.

Сокращение численности за эти пределы может привести к вымиранию популяции. Численность популяций может резко меняться по сезонам и годам.

Популяция состоит из разных по полу и возрасту особей. Соотношение половозрелых и неполовозрелых особей в популяциях различно и зависит от продолжительности жизни, времени наступления половой зрелости, интенсивности размножения. Соотношение полов, т. е. число мужских и женских особей, в популяции изменяется.
Таким образом, популяции представляют собой форму существования вида, обеспечивающую приспособленность его к конкретным условиям среды.

№ 31 Сперматогенез и овогенез. Биологическое значение полового размножения.

 

Сперматогенез - от греч. sperma, род. п. spermatos - семя и...генез), образование дифференцированных мужских половых клеток - сперматозоидов; у человека и животных - в семенниках, у низших растений - в антеридиях. У большинства высших растений в пыльцевой трубке образуются сперматозоиды, чаще называются спермиями.

Сперматогенез начинается одновременно с деятельностью яичка под влиянием половых гормонов в период полового созревания подростка и далее протекает непрерывно (у большинства мужчин практически до конца жизни), имеет чёткий ритм и равномерную интенсивность. Сперматогонии, содержащие удвоенный набор хромосом, делятся путём митоза, приводя к возникновению последующих клеток - сперматоцитов 1-го порядка. Далее в результате двух последовательных делений (мейотические деления) образуются сперматоциты 2-го порядка, а затем сперматиды (клетки сперматогенеза, непосредственно предшествующие сперматозоиду). При этих делениях происходит уменьшение (редукция) числа хромосом вдвое. Сперматиды не делятся, вступают в заключительный период сперматогенеза (период формирования спермиев) и после длительной фазы дифференцировки превращаются в сперматозоиды. Происходит это путём постепенного вытяжения клетки, изменения, удлинения её формы, в результате чего клеточное ядро сперматида образует головку сперматозоида, а оболочка и цитоплазма - шейку и хвост. В последней фазе развития головки сперматозоидов тесно примыкают к клеткам Сертоли, получая от них питание до полного созревания. После этого сперматозоиды, уже зрелые, попадают в просвет канальца яичка и далее в придаток, где происходит их накопление и выведение из организма во время семяизвержения

Овогенез - процесс развития женских половых клеток гамет, заканчивающийся формированием яйцеклеток. У женщины в течение менструального цикла созревает лишь одна яйцеклетка. Процесс овогенеза имеет принципиальное сходство со сперматогенезом и также проходит через ряд стадий: размножения, роста и созревания. Яйцеклетки образуются в яичнике, развиваясь из незрелых половых клеток — овогониев, содержащих диплоидное число хромосом. Овогонии, подобно сперматогониям, претерпевают последовательные митотические деления, которые завершаются к моменту рождения плода.

Затем наступает период роста овогониев, когда их называют овоцитами I порядка. Они окружены одним слоем клеток — гранулёзной оболочкой — и образуют так называемые примордиальные фолликулы. Плод женского пола накануне рождения содержит около 2 млн. этих фолликулов, но лишь примерно 450 из них достигают стадии овоцитов II порядка и выходят из яичника в процессе овуляции. Созревание овоцита сопровождается двумя последовательными делениями, приводящими к уменьшению числа хромосом в клетке вдвое. В результате первого деления мейоза образуется крупный овоцит II порядка и первое полярное тельце, а после второго деления — зрелая, способная к оплодотворению и дальнейшему развитию яйцеклетка с гаплоидным набором хромосом и второе полярное тельце. Полярные тельца представляют собой мелкие клетки, не играют роли в овогенезе и в конечном счёте разрушаются.

Биологическое значение полового размножения состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признаки обоих родительских организмов. При образовании гамет в мейозе возникают клетки с разным сочетанием хромосом, поэтому после оплодотворения новые организмы сочетают в себе признаки отца и матери в различных комбинациях. В результате этого значительно увеличивается наследственное разнообразие организмов

 

№ 32 Понятие о виде. Критерии вида.Видообразование.

 

Живой мир Земли состоит из огромного количества существ различных видов. Вид – одно из основных понятий биологии. Учение о виде разрабатывал Ч.Дарвин.
По современным понятиям вид – это совокупность особей, сходных по строению, имеющих одинаковый набор хромосом, занимающих определенную область обитания (ареал), свободно скрещивающихся между собой и дающих плодовитое потомство.

Вид представляет собой основную структурную единицу в системе живых организмов. Однако определить принадлежность особей к одному виду иногда бывает трудно. Для этого используется целый ряд критериев.

1. Морфологический критерий – это главный критерий, использовавшийся до середины нашего века. Он основывается на внешних различиях между видами животных или растений. Однако иногда встречаются виды-двойники, которые внешне почти не отличаются друг от друга.

2. Географический критерий основан на том, что каждый вид обитает в пределах определенного пространства (ареала). Однако существуют виды, занимающие огромные пространства. Кроме того, многие близкие виды занимают практически одни и те же ареалы.

3. Экологический критерий предполагает, что каждый вид характеризуется определенным типом питания, местом обитания, сроками размножения и т.д., то есть занимает собственную экологическую нишу. Однако некоторые виды занимают очень близкие экологические ниши. Кроме того, часто один и тот же вид, обитающий на большой территории, занимает в разных районах ареала различные ниши.

4. Этологический критерий основан на том, что поведение животных разных видов различно. Но этот критерий нельзя считать абсолютным, так как поведение многих близких видов почти одинаково.

5. Генетический критерий основан на главном свойстве вида – его генетической изоляции: животные и растения разных видов почти никогда не скрещиваются между собой. Если же такое иногда и происходит, то потомство, как правило, нежизнеспособно и, во всяком случае, бесплодно из-за того, что хромосомы у разных видов несовместимы и не могут конъюгировать во время мейоза. Но и этот критерий нельзя считать абсолютным, так как межвидовые гибриды в природе иногда встречаются, особенно среди растений.

Таким образом, определить принадлежность особи к конкретному виду можно только на основе совокупности всех или большинства критериев.

Понятие о видообразовании. Процесс адаптации отдельных групп организмов любого вида к конкретным условиям среды может привести к образованию новых видов. Видообразование — процесс возникновения одного или нескольких новых видов на основе существовавшего ранее.

Факторы видообразования. У организмов, размножающихся половым путем, вид представляет совокупность связанных между собой популяций. Пока особи разных популяций внутри вида хоть изредка могут скрещиваться между собой и давать плодовитое потомство, т.е. пока существует поток генов из одной популяции в другую, вид остается целостной системой. Однако если между отдельными популяциями или группами популяций возникнут какие-либо препятствия, затрудняющие обмен генами (изоляция), это приведет к расчленению вида. Изоляция — это постоянное ограничение свободного скрещивания особей разных популяций или внутри одной популяции.

 

 

 

 

 

 

 

 

 

 

 


Дата добавления: 2015-11-04; просмотров: 47 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.04 сек.)







<== предыдущая лекция | следующая лекция ==>