Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики. 4 страница



Из изложенного ясно, что наш вывод справедлив лишь в том случае, если в процессе участвовала лишь сила тяжести и отсутствовала сила трения и всевозможные другие силы, могущие вызвать указанные выше изменения внутренней энергии. Таким образом, силы гравитационного поля, в отличие от многих других сил, например сил трения, обладают свойством, которое мы можем сформулировать так: работа, совершаемая гравитационными силами при перемещении тела по замкнутому пути, равна нулю. Нетрудно видеть, что это свойство гравитационных сил является выражением закона сохранения (консервации) полной механической энергии. В связи с этим силовые поля, которые обладают указанным свойством, называют консервативными.

 

 

Физический смысл:
Потенциал это энергия по переносу единичного электрического заряда в данную точку поля из бесконечности.
Разность потенциала это работа по перемещению единичного положительного заряда из одной точки поля в другую.

 

Полупроводники — вещества, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких эВ (электрон-вольта), то есть соизмерима с kT. Например, алмаз можно отнести к широкозонным полупроводникам, а InAs — к узкозонным.

В зависимости от того, отдаёт ли атом примеси электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства изоляторов
Проводник — вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод в виде угля и графита). Пример проводящих жидкостей — электролиты. Пример проводящих газов — ионизированный газ (плазма). Некоторые вещества при нормальных условиях являющиеся изоляторами при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.



Проводниками также называют части электрических цепей — соединительные провода и шины.

Микроскопическое описание проводников связано с электронной теорией металлов. Наиболее простая модель описания проводимости известна с начала прошлого века и была развита Друде.

Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты)
Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см-3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твердого тела диэлектрик - вещество с шириной запрещенной зоны больше 3 эВ.

Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.

К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком.

Диэлектрики используются не только как изоляционные материалы.

Ряд диэлектриков проявляют интересные физические свойства.

К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

 

Проводники в электрическом поле.Проводники — это вещества, характеризующиеся наличием в них боль­шого количества свободных носителей зарядов, способ­ных перемещаться под действием электрического поля. К проводникам относятся металлы, электролиты, уголь. В металлах носителями свободных зарядов являются электроны внешних оболочек атомов, которые при взаи­модействии атомов полностью утрачивают связи со «своими» атомами и становятся собственностью всего проводника в целом. Свободные электроны участвуют в тепловом движении подобно молекулам газа и могут перемещаться по металлу в любом направлении.

В металлическом теле (рис. 1.4) под действием внеш­него электрического поля, имеющего напряженность Е, свободные электроны перемещаются навстречу линиям напряженности.

Явление разделения зарядов проводника внешним электрическим полем называется электростатической индукцией.

В результате разделения зарядов в проводнике создается внутреннее электрическое поле с напряжен­ностью Ев, направленное противо­положно внешнему. Под действием поля смещается только часть электронов проводника, необходимая для созда­ния Ев, уравновешивающего Е.

Если бы результирующая напряженность поля внутри проводника была больше нуля, продолжалось бы раз­деление зарядов под ее действием. Внутри проводника электрическое поле отсутствует. Это свойство на прак­тике используется для электростатического экра­нирования, т. е. защиты какого-либо устройства, например измерительного механизма прибора, от влия­ния внешних электрических полей. Прибор помещают в металлический кожух, называемый экраном.

Диэлектрикив электрическом поле.В диэлектриках практически отсутствуют свободные носители зарядов. Все носители зарядов диэлектриков входят в состав их молекул, связаны между собой и под действием внешнего поля могут смещаться лишь на очень малые расстояния: в пределах молекулы или атома.

Многие диэлектрики имеют полярные молекулы. При электрической нейтральности молекулы в целом ее поло­жительный и отрицательный заряды расположены асим­метрично, что позволяет представить полярные молекулы так называемыми электрическими диполями, т. е. как пару разноименных зарядов, находящихся на небольшом расстоянии друг от друга.

 

Электри́ческий ток — направленное (упорядоченное) движение заряженныхчастиц.

Такими частицами могут являться: в металлах — электроны, в электролитах —ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки(электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

• нагревание проводников (в сверхпроводниках не происходит выделения теплоты);

• изменение химического состава проводников (наблюдается преимущественно в электролитах);

• создание магнитного поля (проявляется у всех без исключения проводников).

 

1. наличие свободных носителей зарядов, 2. наличие разности потенциалов. это условия возникновения тока. чтобы ток существовал необходимы еще: 3. замкнутая цепь, 4. источник сторонних сил, который поддерживает разность потенциалов.

 

 

Источники электрической энергии - это гальванические элементы, аккумуляторы, генераторы и другие устройства, в которых происходит процесс преобразования химической, тепловой, механической или другого вида энергии в электрическую.

Источники энергии разделяют на источники тока и источники ЭДС (электродвижущей силы). Под ЭДС понимают работу сторонних сил, присущих источнику, потраченных на перемещение единичного заряда внутри источника от зажима с меньшим потенциалом к зажиму с большим потенциалом.

Все источники энергии называют активными элементами.

Источники электрической энергии в быту - это обыкновенные розетки, куда мы подключаем чайники, кипятильники, стиральные машинки.

Источники электрической энергии делятся:

• Первичные источники электрической энергии – это источники, которые один тип энергии (механическая, тепловая, химическая) преобразуют в электрическую энергию.

• Вторичные источники электрической энергии – это источники, которые преобразуют электрическую энергию от первичных источников в электрическую энергию удобную применения приемником энергии.

 

 

Это тогда, когда все элементы, которые содерживаются в цепи, включенные и через них протекает электрический ток.

Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в системе СИ измеряется в Амперах.

По закону Ома сила тока I пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению проводника R:

Плотностью тока называется вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярную направлению тока, к величине этой площадки, а направление вектора совпадает с направлением движения положительного заряда в токе.

Согласно закону Ома плотность тока в среде пропорциональна напряжённости электрического поля и проводимости среды:

Плотность тока в системе СИ измеряется в амперах на квадратный метр.

 

 

Электри́ческое сопротивле́ние (гальваническое сопротивление) — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

 

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

 

 

1. Сила тока на участке цепи прямо пропорциональна напряжению на этом участке (при заданном сопротивлении) и обратно пропорциональна сопротивлению участка (при заданном напряжении). I = U / R
2. Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника. I = E / R + r
3. Сила тока (I)- скалярная величина, равная отношению заряда q, прошедшего через поперечное сечение проводника, к промежутку времени t, в течение которого шел ток. I = q / t

 

Вольт-ампе́рная характери́стика (ВАХ) — зависимость тока черездвухполюсник от напряжения на этом двухполюснике. Описывает поведение двухполюсника на постоянном токе. А также функциявыражающая (описывающая) эту зависимость. А также — графикэтой функции. Чаще всего рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности), поскольку для линейных элементов ВАХ представляет собой прямую линию (описывающуюся законом Ома) и не представляет особого интереса.

Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, тиристор, стабилитрон.

Для трёхполюсных элементов (таких, как транзистор, тиристор илиламповый триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при так или иначе заданных параметрах на третьем выводе элемента.

Необходимо отметить, что в реальной схеме, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства реальная зависимость напряжения от времени может пробегать по траекториям, весьма далёким от «идеальной» ВАХ. Чаще всего это связано с ёмкостью или другими инерционными свойствами элемента.

Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

 

Формулировка закона Ома для полной цепи - сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи, где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

 

Формулировка:
Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.
Формула:
A= U*I*t
1 Джоуль = 1 Вольт * 1 Ампер * 1 секунда
______
Формулировка:
Мощность электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока.
Формула:
P=UI
1 Ватт = 1 Вольт * 1 Ампер

 

Работа и мощность. Закон Джоуля-Ленца.

Работа и мощность тока. Закон Джоуля-Ленца.

Прохождение электрического тока по проводнику представляет собой процесс упорядоченного движения зарядов в электрическом поле, существующем в проводнике. При этом силы электрического поля, действующие на заряды, совершают работу. Назовем эту работу “работой тока” (Aэл.) и рассчитаем ее на участке цепи 1-2, содержащем сопротивление R (см. рисунок).

Из электростатики известно, что Aэл. = q*(f1 - f2).

В темах 1 и 2 раздела “постоянный ток” показано, что

q = I*t; U = I*R; U = f1 - f2

гдеt - время прохождения тока,
q - заряд, прошедший от точки с потенциалом f1 до точки с потенциалом f2.

Следовательно, работу тока можно вычислить с помощью следующего соотношения:

Aэл. = I*U*t = I2*R*t = U2*t/R. (12)

Мощностью (Nэл.) называется работа, совершаемая током за единицу времени:

Nэл. = Aэл. /t.

Следовательно,

Nэл. = I*U = I2*R = U2/R. (13)

Мощность электрического тока на опыте определяется с помощью амперметра и вольтметра или специального прибора – ваттметра.

Закон Джоуля-Ленца

Если по активному сопротивлению (проводнику) течет постоянный ток, то работа тока на этом участке идет на преобразование электрической энергии во внутреннюю. Увеличение внутренней энергии проводника приводит к повышению его температуры (проводник нагревается).

По закону сохранения энергии количество теплоты (Q), выделяющееся в проводнике при прохождении электрического тока, равно работе тока: Q = Aэл.

Следовательно,

Q = I*U*t = I2*R*t = U2*t/R. (14)

Формула (14) есть закон Джоуля-Ленца для однородного участка цепи.

 

В проводнике всегда имеются свободные носители заряда, это его почти неотъемлемое свойство. В полупроводнике эти носители вот-вот появились бы, но "в норме" их нет; они появляются при определённых условиях, при добавлении каких-то примесей (легировании) и т. п.

Таким образом, образованием и исчезновением носителей полупроводника можно управлять технологически.

Например, соединив два куска проводника разного легирования, можно изготовить диод, который проводит ток только в одном направлении; соединив три куска, можно изготовить транзистор, в котором ток в одном куске управляет прохождением тока через два других (электронный вентиль); можно изготовить фотоэлемент, который под воздействием света будет менять свою проводимость и так далее.

 

 

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры[1].

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температурыабсолютного нуля полупроводники имеют свойства диэлектриков.

 

Образование свободных носителей заряда не должно быть связано с примесными состояниями.

При образовании свободных носителей заряда в полупроводнике за счет внешних воздействий, например света, энергия свободных носителей в момент их образования может сильно отличаться от средней тепловой энергии решетки. Это означает отсутствие термодинамического равновесия между решеткой и образовавшимися свободными носителями. Такие носители заряда называют неравновесными. Однако следует иметь в виду, что термодинамическое равновесие устанавливается за очень короткий промежуток времени порядка 10 - 10 с и неравновесные носители заряда в дальнейшем не отличаются от равновесных.

Появление возбужденных состояний в полупроводнике приводит к образованию свободных носителей заряда. Возврат возбужденных состояний в основное может сопровождаться различными процессами. Релаксация возбужденных состояний может приводить и к другим процессам. Одним из них является генерация свободных носителей заряда. Обычно при обсуждении фундаментальных свойств свободных носителей считается, что они возникают под действием термического возбуждения. Появление в полупроводнике свободных носителей под действием облучения имеет свои особенности, которые мы тоже обсудим в данной главе.

Электропроводность полупроводника называется собственной, если она обусловлена образованием свободных носителей зарядов обоих типов в результате внешнего воздействия на полупроводник.

Это предположение тем более вероятно, что первой стадией при образовании фотовозбужденных свободных носителей заряда в антрацене является образование молекулярного экситона, который локализуется на дефектах поверхности. При термическом распаде экситона электрон, по-видимому, захватывается дефектом, а дырка выходит в объем кристалла.

 

смотреть 44

 

Примесная проводимость полупроводников — электрическая проводимость, обусловленная наличием вполупроводнике донорных или акцепторных примесей.

Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в него легирующих примесей.

Собственная проводимость полупроводников обычно невелика, так как число свободных электронов, например, в германии при комнатной температуре порядка 3·1013 / см3. В то же время число атомов германия в 1 см3 ~ 1023. Проводимость полупроводников увеличивается с введением примесей, когда наряду с собственной проводимостью возникает дополнительная примесная проводимость.

Примесными центрами могут быть:

1. атомы или ионы химических элементов, внедренные в решетку полупроводника;

2. избыточные атомы или ионы, внедренные в междоузлия решетки;

3. различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.

Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

Примеси можно разделить на донорные (отдающие) и акцепторные (принимающие).

Рассмотрим механизм электропроводности полупроводника с донорной пятивалентной примесью мышьяка As5+, которую вводят в кристалл, например, кремния. Пятивалентный атом мышьяка отдает четыре валентных электрона на образование ковалентных связей, а пятый электрон оказывается незанятым в этих связях.


Энергия отрыва (энергия ионизации) пятого валентного электрона мышьяка в кремнии равна 0,05 эВ = 0,08·10−19Дж, что в 20 раз меньше энергии отрыва электрона от атома кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка теряют один из своих электронов и становятся положительными ионами. Положительные ионы мышьяка не могут захватить электроны соседних атомов, так как все четыре связи у них уже укомплектованы электронами. В этом случае перемещения электронной вакансии — «дырки» не происходит и дырочная проводимость очень мала, то есть практически отсутствует. Небольшая часть собственных атомов полупроводника ионизирована, и часть тока образуется дырками, то есть донорные примеси — это примеси, поставляющие электроны проводимости без возникновения равного количества подвижных дырок. В итоге мы получаемполупроводник с преимущественно электронной проводимостью, называемый полупроводником n-типа.

В случае акцепторной примеси, например, трехвалентного индия In3+ атом примеси может дать свои три электрона для осуществления ковалентной связи только с тремя соседними атомами кремния, а одного электрона «недостает». Один из электронов соседних атомов кремния может заполнить эту связь, тогда атом In станет неподвижным отрицательным ионом, а на месте ушедшего от одного из атомов кремния электрона образуется дырка. Акцепторные примеси, захватывая электроны и создавая тем самым подвижные дырки, не увеличивают при этом числа электронов проводимости. Основные носители заряда в полупроводнике с акцепторной примесью — дырки, а неосновные — электроны.

Полупроводники, у которых концентрация дырок превышает концентрацию электронов проводимости, называютсяполупроводниками р-типа.

Необходимо отметить, что введение примесей в полупроводники, как и в любых металлах, нарушает строение кристаллической решетки и затрудняет движение электронов. Однако сопротивление не увеличивается из-за того, что увеличение концентрации носителей зарядов значительно уменьшает сопротивление. Так, введение примеси бора в количестве 1 атом на сто тысяч атомов кремния уменьшает удельное электрическое сопротивление кремния приблизительно в тысячу раз, а примесь одного атома индия на 108 — 109 атомов германия уменьшает удельное электрическое сопротивление германия в миллионы раз.

Возможность управления удельным сопротивлением благодаря введению примесей используется в полупроводниковых приборах.

Дырочная проводимость не является исключительной особенностью полупроводников. У некоторых металлов и их сплавов существует смешанная электронно-дырочная проводимость за счет перемещений некоторой части неколлективированных валентных электронов. Например, в цинке, бериллии, кадмии, сплавах меди с оловом дырочная составляющая электрического тока преобладает над электронной.

Если в полупроводник одновременно вводятся и донорные и акцепторные примеси, то характер проводимости (n- или p-тип) определяется примесью с более высокой концентрацией носителей тока — электронов или дырок.

 

 

Полупроводник p-типа — полупроводник, в котором основными носителямизаряда являются дырки.

Полупроводники p-типа получают методом легирования собственных полупроводников акцепторами. Для полупроводников четвёртой группы периодической таблицы, таких как кремний и германий, акцепторами могут быть примеси химических элементов третьей группы — бор, алюминий.

Концентрация дырок в валентной зоне определяется температурой, концентрацией акцепторов, положением акцепторного уровня над верхомвалентной зоны, эффективной плотностью уровней в валентной зоне.

 

Полупроводнико́вый дио́д — полупроводниковый прибор, в широком смысле - электронный прибор, изготовленный из полупроводникового материала, имеющий два электрических вывода (электрода). В более узком смысле - полупроводниковый прибор, во внутренней структуре которого сформирован один или несколько p-n-переходов.

В отличие от других типов диодов, например, вакуумных, принцип действия полупроводниковых диодов основывается на различных физических явлениях переноса зарядов в твердотельном полупроводнике и взаимодействии их с электромагнитном полем в полупроводнике.


Полупроводниковый триод, называемый также транзистором, представляет собой пластинку, состоящую из полупроводников двух различных проводимостей, которые образуют три зоны. Крайние зоны обладают проводимостью одного рода, а средняя зона - проводимостью другого рода.

 

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния ихдвижения; магнитная составляющая электромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).

Кроме этого, оно возникает в результате изменения во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля). С математической точки зрения — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

 

Опыт Эрстеда легко воспроизвести в школьной лаборатории (рис.2). Для этого достаточно взять вертикальный проводник, вокруг него расположить на подставках несколько магнитных стрелок и пропустить по проводнику электрический ток. При отсутствии тока, магнитный стрелки, как и положено, ориентируются в направлении «север-юг», при замыкании цепи и увеличении силы тока стрелки начинают ориентироваться по кругу, стремясь занять положение перпендикулярное проводнику с током и отрезку, соединяющему стрелку с проводником. Такой полной ориентации, естественно мешает влияние магнитных полюсов Земли

Сообщение об открытии Эрстеда быстро распространилось по Европе и произвело на физиков того времени сильнейшее впечатление – действительно между магнитными и электрическими явлениями, которые со времен Гильберта считались принципиально различными, была установлена такая простая связь.

Известие об этом открытии стало звездным часом для французского физика А.М. Ампера, который в течение двух месяцев фактически создал новую науку о магнитных взаимодействиях – электродинамику (кстати, этот термин, как и многие другие, придумал А.М. Ампер). Гениальная догадка Ампера заключалась в том, что магнитные взаимодействия есть взаимодействия электрических токов.

Эту гипотезу А.М. Ампер сумел подтвердить многочисленными экспериментами.

 

Пра́вило бура́вчика (пра́вило винта́), или пра́вило правой руки — варианты мнемонического правила для определения направлениявекторного произведения и тесно связанного с этим выбора правогобазиса в трехмерном пространстве, соглашения о положительной ориентации базиса в нём, и соответственно — знака любогоаксиального вектора, определяемого через ориентацию базиса.

В частности, это относится к определению направления таких важных в физике аксиальных векторов, как вектор угловой скорости, характеризующий скорость вращения тела, вектор магнитной индукции B и многих других, а также для определения направления таких векторов, которые определяются через аксиальные, например, направлениеиндукционного тока при заданном векторе магнитной индукции.


Дата добавления: 2015-11-04; просмотров: 20 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.027 сек.)







<== предыдущая лекция | следующая лекция ==>