Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам q1 и q2 b и обратно пропорциональна квадрату расстояния r между ними



I. Электростатика

1)Закон Кулона.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам q1 и q2 b и обратно пропорциональна квадрату расстояния r между ними F=k |q1q2|/r^2

где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности..

2)Электрическая поле, напряжённость электрического поля .

Напряженность – сила, действующая на помещенный в данную точку единичный положительный заряд. E = F / q

Электрическое поле – особый вид материи, окружающий заряженное тело. Электрическое поле-поле посредством которого взаимодействуют электрические заряды. Напряженность электрического поля данной точки есть физическая величина, определяемая силой, движущей на пробный единичный положительный заряд, помещённый в эту точку поля.

Напряженность поля точечного заряда. E = k q0 / R2

Напряженность поля точечного заряда зависит от величины заряда, создающего поле и не зависит от величины пробного заряда.

3)Теорема Гаусса-Остроградского .

∆Ф = q∆Ω/4πε0; Ф = ∑∆Ф = q/ε0

Ф = ∑qвнутр / ε0

Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключённых внутри этой поверхности зарядов, делённой на ε0.

4)Напряженность электрического поля сферы, равномерно заряженной по поверхности.

Напряженность поля равномерно

заряженной сферы

Ф = 4πr2E

4πr2E = q/ε0

E = q/4πε0r2 = kq/r2

5)Напряженность электрического поля сферы, равномерно заряженной по объёму.

При r < R ; при r > R .

Способ расчета с помощью теоремы Гаусса для любого сферически симметричного распределения заряда в целом сводится к тому, что описано выше для случая точечного заряда

Отметим тут только в отношении неточечных источников обладающих сферической симметрией вот что (всё это является очевидными следствиями применения описанного там метода):

1)Сферически симметричный заряд с концентрической сферической пустотой (или незаряженной областью) в середине, не создает внутри этой пустоты поля (напряженность поля там равна нулю).

2)Вообще поле на расстоянии r от центра создается только теми зарядами, которые находятся глубже к центру. Это поле можно рассчитать по закону Кулона: , только под Q здесь следует понимать суммарный заряд шаровой области радиусом r (а это означает, что зависимость от r в итоге отличается от кулоновской, поскольку с ростом r растет Q, по карйней мере пока r не больше радиуса всей заряженной области — если только она в свою очередь конечна).



3)При r, больших радиуса заряженной области (если он конечен), выполняется самый обычный закон Кулона (как для точечного заряда). Это объясняет, например, почему обычный закон Кулона работает для равномерно заряженных шаров, сфер, планет со структурой близкой к сферически симметричной даже вблизи их поверхности (например, почему вблизи поверхности Земли гравитационное поле достаточно близко к полю точечной массы, сосредоточенной в центре Земли).

4)В интересном частном случае равномерно заряженного шара, его электрическое (или гравитационное) поле оказывается внутри шара пропорциональным расстоянию до центра.

6)Поле бесконечно длинной заряженной нити.

7)Поле бесконечно большой равномерно заряженной плоскости. Две бесконечно большие равномерно заряженные плоскости.

1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS — заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Еn совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε0, откуда
(1)
Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно.
2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 2). Пусть плоскости заряжены равномерно разными по знаку зарядами с поверхностными плотностями +σ и –σ. Поле таких плоскостей будем искать как суперпозицию полей, которые создаваются каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательно заряженной плоскости. Слева и справа от плоскостей поля вычитаются (поскольку линии напряженности направлены навстречу друг другу), значит здесь напряженность поля E=0. В области между плоскостями E = E+ + E- (E+ и E- находятся по формуле (1)), поэтому результирующая напряженность
(2)
Значит, результирующая напряженность поля в области между плоскостями описывается зависимостью (2), а вне объема, который ограничен плоскостями, равна нулю.

 

 

8)Работа перемещения заряда в электрическом поле. Потенциал электрического поля.

Работа, совершаемая электрическим полем при перемещении точечного заряда q из точки (1) в точку (2), равна разности значений потенциальной энергии в этих точках и не зависит от пути перемещения заряда и от выбора точки (0).

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

9)Взаимосвязь потенциала и напряженности электрического поля.

Напряженность Е поля равна гради­енту потенциала со знаком минус. Знак минус определяется тем, что вектор на­пряженности Е поля направлен в сторону убывания потенциала. E=-grad или Е=-дельта

10)Проводники в электрическом поле.

Основная особенность проводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники – металлы. В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

Индукционные заряды создают свое собственное Е1 поле, которое компенсирует внешнее поле Е0 во всем объеме проводника: (внутри проводника).

Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

Все внутренние области проводника, внесенного в электрическое поле, остаются электронейтральными. Если удалить некоторый объем, выделенный внутри проводника, и образовать пустую полость, то электрическое поле внутри полости будет равно нулю. На этом основана электростатическая защита – чувствительные к электрическому полю приборы для исключения влияния поля помещают в металлические ящики

Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней.

11)Электроёмкость проводников, плоский конденсатор, соединение конденсаторов.

Электроемкость характеризует способность проводников или системы из нескольких проводников накапливать электрические заряды, а следовательно, и электроэнергию, которая в дальнейшем может быть использована, например, при фотосъемке (вспышка) и т.д. Различают электроемкость уединенного проводника, системы проводников (в частности, конденсаторов). Уединенным называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния. Электроемкость уединенного проводника — физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу: . В СИ единицей электроемкости является фарад (Ф). Также различают конденсаторы по форме обкладок: плоские,цилиндрические, сферические и другие.

12)Энергия заряженного проводника и энергия электрического поля. Энергия заряженного проводника: заряд сосредоточивается на поверхности проводника, причем поверхность проводника эквипотенциальна. Разбивая эту поверхность на маленькие участки, каждый из которых имеет заряд Δ q, и учитывая, что потенциал в месте расположения каждого из зарядов одинаков, имеем Так как емкость проводника C = q /φ, то выражение может быть также представлено, как . Энергия электрического поля: V=sd-объем конденсатора. формула показывает, что энергия конденсатора выражается через величину, характеризующую электрическое поле,-напряженность Е.

13)Диэлектрики в электрическом поле. Поляризация диэлектриков.

Диэлектрики в электрическом поле . В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.Диэлектрики бывают полярные и неполярные.

При внесении диэлектрика во внешнее электрическое поле Е0 в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов. Поляризация диэлектриков: Связанные заряды создают электрическое поле Е1,которое внутри диэлектрика направлено противоположно вектору напряженности Е0 внешнего поля. Этот процесс называется поляризацией диэлектрика. Физическая величина, равная отношению модуля напряженности Е0 внешнего электрического поля в вакууме к модулю напряженности Е полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества. Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд Q, то напряженность поля Е, создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

14)Основное соотношение электростатики диэлектриков. Механизм поляризации. Типы поляризации. Существует ориентационная и электронная поляризации. Эти механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков. Электронный механизм проявляется при поляризации неполярных диэлектриков. Под действием электрического поля молекулы неполярных диэлектриков деформируются – положительные заряды смещаются в направлении вектора Е0, а отрицательные – в противоположном направлении. Ориентационная или дипольная поляризация возникает в случае полярных диэлектриков, состоящих из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. В случае твердых кристаллических диэлектриков наблюдается так называемая ионная поляризация, при которой ионы разных знаков, составляющие кристаллическую решетку, при наложении внешнего поля смещаются в противоположных направлениях, вследствие чего на гранях кристалла появляются связанные (нескомпенсированные) заряды.

II. Постоянный ток

1)Основные понятия и законы постоянного тока.

Электрический ток — направленное движение электрических зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника: Закон Ома для участка цепи имеет вид: Сопротивление проводника зависит от его геометрии и свойств материала:

Сопротивление последов. соединения находится как сумма сопротивлений: При параллельном:

Количественно источники тока характеризуют их электродвижущей силой (ЭДС). Это отношение работы, которую совершают сторонние силы при переносе электрических зарядов по замкнутой цепи, к величине перенесенного заряда:

2)Закон Ома в дифференциальной форме.

Сопротивление зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

3)Закон Ома для полной цепи. Электродвижущая сила .

Закон Ома для полной цепи:

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура. ε=A/Q0

4)Разветвленные цепи. Правило Киргофа.

Расчет разветвленных цепей значительно упрощается, если пользоваться правилами, сформулированными немецким физиком Г. Р. Кирхгофом. Этих правил два.Первое из них относится к узлам цепи. Узлом называется точка, в которой сходится более чем два проводника Ток, текущий к узлу, считается положительным, текущий от узла имеет противоположный знак. Первое правило Кирхгофа гласит, что, алгебраическая сумма токов, сходящихся в узле, равна нулю:

Это правило вытекает из уравнения непрерывности, т. е., в конечном счете, из закона сохранения заряда. Число уравнений, составленных по первому правилу Кирхгофа, должно быть на одно меньше, чем число узлов в исследуемой цепи.второе правило Кирхгофа: для любого замкнутого контура алгебраическая сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.

5)Элементы зонной теории твердого тела.

Зонная теория твёрдого телаквантовомеханическая теория движения электронов в твёрдом теле.

В основе зонной теории лежат следующие главные приближения:[1]

1. Твердое тело представляет собой идеально периодический кристалл.

2.Равновесные положения узлов кристаллической решетки фиксированы, т.е. ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы, вводятся впоследствии как возмущение электронного энергетического спектра.

3. Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.

6)Классическая электронная теория проводимости металлов. Закон Ома.

Исходя из представлений о свободных электронах как основных носителях тока в металлах, Друде (Drude P., 1863-1906) разработал классическую теорию электропровод-ности металлов, которая затем была усовершенствована Лоренцем (Lorentz H., 1853-1928).

Основные положения этой теории сводятся к следующим:

1). Носителями тока в металлах являются электроны, движение которых подчиняется законом классической механики.

2). Поведение электронов подобно поведению молекул идеального газа (электронный газ).

3). При движении электронов в кристаллической решетке можно не учитывать столкновения электронов друг с другом.

4). При упругом столкновении электронов с ионами электроны полностью передают им накопленную в электрическом поле энергию

Средняя тепловая скорость хаотического движения электронов при Т300К составляет .

Закон Ома можно просто объяснить при помощи теории Друде:

7)Сверхпроводимость.

Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура)

8)Полупроводники. Собственная и примесная проводимость.

Полупроводники́материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

9)p-n переход, полупроводниковые диоды.

p-n-Перехо́д или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.

Полупроводниковый диодполупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.

10)Контактные явления. Контактная разность потенциалов. Закон Вольты.

Контактные явления , физ. хим., явления, вызываемые присутствием в сфере реагирующих родов молекул таких веществ. которые, не подвергаясь сами превращению, вызывают реакцию; Контактная разность потенциалов — это разность потенциалов, возникающая при соприкосновении двух различных проводников, находящихся при одинаковой температуре.например, губчатая платина своим присутствием вызывает соединение водорода и кислорода, сернистого ангидрида и кислорода и т. п.

Законы Вольты 1. На контакте двух разных металлов возникает разность потенциалов, которая зависит от химической природы и от температуры спаев.

2. Разность потенциалов на концах последовательно соединенных проводников не зависит от промежуточных проводников и равна разности потенциалов, возникающей при соединении крайних проводников при той же температуре (закон последовательных контактов Вольта).

11)Термоэлектродвижущая сила. Закон Пельтье.

Термоэдс, электродвижущая сила, возникающая в электрической цепи, состоящей из нескольких разнородных проводников, имеющих в местах контактов различную температуру

Пельтье́ эффе́кт - выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье.

12)Термоэлектронная эмиссия.

Термоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным.

13)Разряд в газах. Несамостоятельный разряд.

Га́зовый разря́д — совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии.

Если для существования газового разряда необходима дополнительная ионизация за счёт внешних источников (например, при помощи ионизирующих излучений), то газовый разряд называется несамостоятельным

14)Самостоятельный электрический разряд в газе.

Самостоятельный электрический разряд. При увеличении напряженности электрического поля до некоторого определенного значения, зависящего от природы газа и его давления, в газе возникает электрический ток и без воздействия внешних ионизаторов. Явление прохождения через газ электрического тока, не зависящего от действия внешних ионизаторов, называется самостоятельным электрическим разрядом.
В воздухе при атмосферном давлении самостоятельный электрический разряд возникает при напряженности электрического поля, равной примерно

. III. Электромагнетизм

1)Магнитное поле.

Подобно тому как в пространстве, окружающем электрические заряды, возникает электростатическое поле. Так и в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Магнитное поле окружает

1.движущиеся заряды

2.проводники с током??

3.постоянные магниты

2)Закон Био-Савара-Лапласа.

Магнитное поле постоянных токов различной формы исследовалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791—1841). Результаты их опытов были обобщены французским ученым П. Лапласом.
Закон Био-Савара-Лапласа для проводника с током I, элемент d l которого создает в некоторой точке индукцию поля d B, равен

где d l - вектор, по модулю равный длине d l элемента проводника и совпадающий по направлению с током, r - радиус-вектор, который проведен из элемента d l проводника в точку А поля, r - модуль радиуса-вектора r. Направление d B перпендикулярно d l и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с направлением касательной к линии магнитной индукции. Это направление может быть найдено по правилу правого винта: направление вращения головки винта дает направление d B, если поступательное движение винта совпадает с направлением тока в элементе.
Модуль вектора d B задается выражением

где α — угол между векторами d l и r.

3)Магнитная индукция в центре кругового тока. Магнитное поле в центре кругового проводника с током. Как видно из рисунка, каждый элемент кругового проводника с током создает в центре магнитное поле одинакового направления - вдоль нормали от витка. Значит, сложение векторов d B также можно заменить сложением их модулей. Поскольку расстояние всех элементов проводника до центра кругового тока одинаково и равно R и все элементы проводника перпендикулярны радиусу-вектору (sinα=1), то, используя,

Тогда

Следовательно, магнитная индукция поля в центре кругового проводника с током

4)Магнитная индукция, создаваемая отрезком прямого проводника с током.

Отрезок прямолинейного проводника с током создает в точке, расположенной симметрично по отношению к проводнику на расстоянии от его середины, магнитное поле.

5)Поле бесконечно длинного прямого тока.

Магнитное поле прямого тока — тока, текущего по тонкому прямому бесконечному проводу. В произвольной точке А, удаленной на расстояние R от оси проводника, векторы d B от всех элементов тока имеют одинаковое направление, которое перпендикулярно плоскости чертежа («к вам»). Значит, сложение всех векторов d B можно заменить сложением их модулей. За постоянную интегрирования возьмем угол α (угол между векторами d l и r) и выразим через него все остальные величины. Следует, что
(радиус дуги CD вследствие малости d l равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти формулы в вторую, получим, что магнитная индукция, которая создавается одним элементом проводника, равна
Поскольку угол α для всех элементов прямого тока изменяется в пределах от 0 до π, то, согласно формулам

Значит, магнитная индукция поля прямого тока

6)Закон полного тока.

При анализе магнитных полей важное значение имеет закон полного тока, который в интегральной форме имеет вид: и гласит о том, что линейный интеграл по замкнутому контуру l от напряженности магнитного поля равен полному току, протекающему сквозь сечение, ограниченное этим контуром. Под полным током понимают алгебраическую сумму токов проводимости, переноса и смещения. В дифференциальной форме закон полного тока можно записать следующим образом:

7)Магнитная индукция соленоида.

Солено́ид — разновидность электромагнитов. Соленоид — это односложная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра. Характеризуется значительным соотношением длины намотки к диаметру оправки, что позволяет создать внутри катушки относительно равномерное магнитное поле. BL=ɱɱ0nI.

8)Закон Ампера.

Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока в проводнике и векторному произведению элемента длины проводника на магнитную индукцию : . Опыт Ампера: магнитное взаимодействие проводников с током Объяснение: Движущийся заряд создает магнитное поле, действующее на другие движущиеся заряды.1 Ампер – сила тока, при котором два бесконечных параллельных прямолинейных проводника малого кругового сечения, расположенные на расстоянии 1м друг от друга в вакууме, взаимодействуют с силой 2·10-7 Н на каждый метр длины.

9)Взаимодействие параллельных токов.

Закон Ампера используется при нахождении силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I1 и I2; (направления токов даны на рис. 1), расстояние между которыми R. Каждый из проводников создает вокруг себя магнитное поле, которое действует по закону Ампера на соседний проводник с током. Найдем, с какой силой действует магнитное поле тока I1 на элемент d l второго проводника с током I2. Магнитное поле тока I1 есть линии магнитной индукции, представляющие собой концентрические окружности. Направление вектора B1 задается правилом правого винта, его модуль по формуле (5) есть

Направление силы d F1, с которой поле B1 действует на участок d l второго тока, находится по правилу левой руки и указано на рисунке. Модуль силы, используя (2), с учетом того, что угол α между элементами тока I2 и вектором B1 прямой, будет равен
подставляя значение для В1, найдем (3) Аналогично рассуждая, можно показать, что сила d F2 с которой магнитное поле тока I2 действует на элемент d l первого проводника с током I1, направлена в противоположную сторону и по модулю равна
(4) Сопоставление выражений (3) и (4) дает, что
т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой, равной
(5) Если токи имеют противоположные направления, то, используя правило левой руки, определим, что между ними действует сила отталкивания, определяемая выражением (5).

10)Сила Лоренца.

Сила Лоренца сила, с которой, в рамках классической физики, электромагнитное поледействует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще. иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найденоХевисайдом.

11)Циклотрон.

Циклотрон — резонансный циклический ускоритель нерелятивистских тяжёлых заряженных частиц (протонов, ионов), в котором частицы двигаются в постоянном и однородном магнитном поле, а для их ускорения используется высокочастотное электрическое поле неизменной частоты. В циклотроне тяжёлые ускоряемые частицы инжектируются в камеру вблизи её центра. После этого они движутся внутри полости двух чуть раздвинутых полуцилиндров (дуантов), помещенных в вакуумную камеру между полюсами сильногоэлектромагнита. Однородное магнитное поле этого электромагнита искривляет траекторию частиц. Ускорение движущихся частиц происходит в тот момент, когда они оказываются в зазоре между дуантами. При не слишком больших (нерелятивистских) скоростях частота не зависит от энергии частиц,

так что в зазор между дуантами частицы попадают всегда через один и тот же момент времени. Получая каждый раз при этом некоторое приращение скорости, они продолжают своё движение дальше по окружности всё большего радиуса, и траектория их движения образует плоскую раскручивающуюся спираль. На последнем витке этой спирали включается дополнительно отклоняющее поле, и пучок ускоренных частиц выводится наружу. Поскольку задающее орбиту пучка магнитное поле неизменно, и ускоряющее высокочастотное электрическое поле в процессе ускорения частиц также не меняет параметров, циклотрон может работать в непрерывном режиме: все витки спирали заполнены частицами пучка ионов.

12)Контур с током в магнитном поле.

Для удобства предположим, что контур имеет прямоугольную форму.

1)Пусть dl перпендикулярен B, т. е. любой элемент контура перпендикулярен силовым линиям. Cилы Ампера, действующие на каждый прямолинейный участок контура, указаны на рисунке.

2)Если контур с током расположен перпендикулярно силовым линиям, то действие поля выражается в сжимании и разжимании контура. Если же контур состоит из упругого проводника, то внешнего изменения положения в пространстве не будет.

2) площадь контура с током параллельна силовым линиям. То есть нормаль плоскости контура перпендикулярна вектору магнитной индукции.


Тогда силы Ампера на каждом участке:

I. Sin=1, FA≠0, сила направлена от нас.

II, IV. Sin=0, FA=0, То есть на элемент контура с током лежащим вдоль силовых линий FA не действует.

III Sin=1, FA≠0, сила направлена к нам. Тогда если контур с током закрепить в точках A и B,то при таком расположении его в магнитном поле он будет вращаться, то есть на него действует момент силы.

13)Поток магнитной индукции. (Закон Ома магнитной цепи)

Ф = Iw/RM. Эта формула выражает закон Ома для магнитной цепи. Магнитное сопротивление RM определяют в зависимости от длины силовых линий l (м), площади поперечного сечения силового потока S (м2) и абсолютной магнитной проницаемости µа(Вб/А•м):

Магни́тный пото́к — поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

14)Работа перемещения проводника с током в магнитном поле.

На проводник с током в магнитном поле действуют силы, которые определяются с помощью закона Ампера. Если проводник не закреплен (например, одна из сторон контура сделана в виде подвижной перемычки,), то под действием силы Ампера он в магнитном поле будет перемещаться. Значит, магнитное поле совершает работу по перемещению проводника с током. Работа, которая совершается магнитным полем, равна

так как l dx=dS — площадь, которую пересекает проводник при его перемещении в магнитном поле, BdS=dФ — поток вектора магнитной индукции, который пронизывает эту площадь. Значит,

т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Данная формула справедлива и для произвольного направления вектора В.

15)Явление электромагнитной индукции.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Согласно закону электромагнитной индукции Фарадея (в СИ):

где

электродвижущая сила, действующая вдоль произвольно выбранного контура,

магнитный поток через поверхность, натянутую на этот контур. Знак «минус» в формуле отражает правило Ленца , названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

где

— электродвижущая сила,

— число витков,

— магнитный поток через один виток,

потокосцепление катушки.

16)Метод измерения магнитной индукции.

Магни́тная инду́кция векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

17)Токи Фуко.

Токи Фуко́ (вихревые токи) — замкнутые электрические токи в массивном проводнике, возникающие при изменении пронизывающего его магнитного потока. Они являются индукционными токами, они образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца, магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи.

18)Самоиндукция. Взаимоиндукция.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру. При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции. Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока I: Коэффициент пропорциональности L называется коэффициентом самоиндукции или индуктивностью контура (катушки).

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток.

19)Энергия магнитного поля.

Приращение плотности энергии магнитного поля равно: где: Hнапряжённость магнитного поля, Bмагнитная индукция.В линейном тензорном приближении () плотность энергии равна:

где: тензор магнитной проницаемости, — диагональные компоненты этого тензора, магнитная постоянная В изотропном линейном магнетике:

где: — относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле: где: Ф — магнитный поток,I — ток,L — индуктивность катушки или витка с током.

20)Магнитные свойства вещества. Основное соотношение физики магнетиков.

Магнетизм - фундаментальное свойство материи. С глубокой древности известно свойство постоянных магнитов притягивать железные предметы. Развитие электромагнетизма позволило создать электромагниты более сильные, чем существующие в природе постоянные. Вообще различные приборы и устройства, основанные на использовании электромагнитных явлений, распространены настолько широко, что сейчас без них нельзя уже представить жизни.
Однако с магнитным полем взаимодействуют не только постоянные магниты, но и все остальные вещества. Магнитное поле, взаимодействуя с веществом, изменяет свою величину по сравнению с вакуумом (здесь и далее все формулы записаны в системе СИ):
B = mm0H,
где m0 - магнитная постоянная, равная 4p " 10-7 Гн/м, m - магнитная проницаемость вещества, B - магнитная индукция (в Тл), H - напряженность магнитного поля (в А/м).

21)Классификац


Дата добавления: 2015-11-04; просмотров: 52 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
№1 Ускорение и его составляющие | 

mybiblioteka.su - 2015-2024 год. (0.107 сек.)