Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Задание 2. Методы и средства измерений давления



 

 

ЗАДАНИЕ 2. МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ ДАВЛЕНИЯ

2.1 Пружинная мембрана манометра диаметром D, толщиной h и модулем упругости ЕG деформируется под действием давления от 0 до δmах.

Требуется:

1. Изобразить схему мембраны деформационного манометра.

2. Определить диапазон измеряемых давлений.

3. Определить погрешность измерений, если толщина пружины h выполнена с допуском ±0,01 мм.

4. Сделать заключение о соответствии манометра заданному классу точности.

Решение

Исходные данные сводим в табл. 2.1.

Таблица 2.1

Исходные данные

Параметр

Обозначение

Значение

1. Толщина, мм

h

0,8 мм

2. Диаметр, мм

D

86 мм

3.Модуль упругости

ЕG

92 ГПа

4.Допустимое напряжение мембраны

σmах

600 МПа

5. Начальное напряжение мембраны

σ0

55 МПа

6. Класс точности

-

1.6

7.Перемещение центра мембраны, мм

δ1

0,45

2.1.1 Схема мембраны деформационного манометра

Схема мембраны деформационного манометра приведена на рис. 2.1.

 

Рис. 2.1. Схема мембраны деформационного манометра

2.1.2 Определяем диапазон измеряемых давлений

Механическое напряжение на мембране определяется по формуле

, (2.1)

где p – давление, Па; D – диаметр мембраны, мм; h – толщина мембраны, мм.

Из формулы (2.1) определяем диапазон измерения давлений при заданных значениях напряжения мембраны:

Па

Верхний предел измерения

Па

 

2.1.3 Определение результата измерения давления при перемещении центра мембраны δ1

Деформация мембраны связана с давлением следующим соотношением

, (2.2)

выразим отсюда давление

, (2.3)

Таким образом, при перемещении мембраны δ1=0,35 мм давление составит

Па

2.1.4 Определение погрешности результата измерения по классу точности манометра

При заданном классе точности 1,0 нормируемое значение абсолютной погрешности измерений будет равно

,

Где γ – приведенная погрешность манометра, %; - нормирующее значение, Па: в нашем случае, т.к. рmax = 358996.5 Па принимаем, что верхний предел измерения манометра 350 кПа,т.е. = 350000 Па.

 

Па

Запишем результат измерений

Р=(193139±5250) Па

2.1.5 Определяем погрешность измерений, если толщина пружины h выполнена с допуском ±0,01 мм

Подставим в зависимость (2.1) значения наибольшего давления и величину h с наибольшим и наименьшим размерам

Па

Па

Наибольшую абсолютную погрешность определяем по выражению

= 357560.6-340536.3=17024,3 Па

Подставим в зависимость (2,1) значения минимального давления и величину h с набольшими и наименьшими размерами



Па

Па

 

Минимальную абсолютную погрешность определяем по выражению

=39778,95-37837,37=1941,58 Па

Таким образом, видно, что погрешность от допуска на изготовления толщины мембраны зависит от измеряемого давления, т.е. является мультипликативной

2.2 Измерение давления трубчато – пружинным деформационным манометром

В трубчато-пружинном манометре однотрубная пружина радиусом R0 с первоначальным углом закручивания α = 270° и параметрами поперечного сечения а и b, выполнена из материала с модулем упругости ЕG.

Требуется:

1. Изобразить схему пружинно-трубчатого манометра

2. Определить изменения угла закручивания и угла перемещения конца пружины при заданном наибольшем давлении рmах.

3. Определить погрешность измерений, если диаметр трубки D0 выполнен с допуском ±1,0 мм.

4. Назначить класс точности манометра, с учетом запаса точности 2,5.

Решение

Исходные данные сводим в табл. 2.2.

Таблица 2.2

Исходные данные

Параметр

Обозначение

Значение

1. Радиус

R0

32 мм

2. Параметры поперечного сечения

а

b

19мм

7,2 мм

3.Контролируемый параметр

р

МПа

4. Модуль упругости материала

ЕG

195 ГПа

2.2.1 Схема пружинно-трубчатого манометра

Схема пружинно-трубчатого манометра приведена на рис. 2.2.

Рис. 2.2. Схема пружинно-трубчатого манометра

2.2.2 Выбор класса точности трубчато-пружинного манометра для контроля параметра p

Определяем допуск контролируемого параметра

T=pmax - pmin (2.1)

где pmax – наибольшее значение контролируемого параметра, Па; pmin - минимальное значение контролируемого параметра, МПа.

Для контролируемого параметра МПа;

наибольшее давление pmax=7,9 МПа;

минимальное давление pmin=7,4 МПа

T=7,9-7,4=0,5 МПа

 

Допускаемая погрешность измерения контролируемого параметра определяем по формуле:

δизм=0,33 T (2.2)

δизм=0,33·0,5=0,165 МПа

Пределы измерения манометра определяем по формулам:

Нижний предел измерения

HДИ ≤ pmin - δизм; (2.3)

HДИ ≤ 7,4 – 0,165 =7,235 МПа;

верхний предел измерения

ВДИ ≤ pmax изм; (2.4)

ВДИ ≤7,9+0,165=8,065 МПа

В соответствии с определенными значениями HДИ и ВДИ выбираем манометр с верхним пределом измерений 10 МПа.

Приведенную погрешность манометра определяем по формуле

(2.5)

Па

По найденному значению основной приведенной погрешности выбираем манометр класса точности 1,6.

 

2.2.3 Определяем изменение угла закручивания и угла перемещения конца пружины при заданном наибольшем давлении

Угла закручивания связано с давлением соотношением

, (2.6)

Изменение угла закручивания определяем по формуле

Δαр – α0 (2.7)

Δα=286° - 270=16°.

2.2.3 Определяем погрешность измерения, если диаметр трубки D0 выполнен с допуском ±1,0 мм.

Из формулы (2.6) выразим давление

(2.8)

Подставим в зависимость (2.6) величину D0 с наибольшим и наименьшим размерами

 

Максимальную абсолютную погрешность определим по выражению

=1,99-1,91=0,08 МПа

Погрешность является мультипликативной, т.к. зависит от измеряемого параметра.

2.3 Измерение давления с помощью пьезоэлектрического преобразователя

Напряжение на пьезокристалле кварца преобразователя давления меняется от Umin до Umах, причем используется n пластин толщиной h и размером a ´ b. Емкость измерительной цепи Свх = 10 пФ. Пьезоэлектрическая постоянная для кварца k0 = 2,2×10-12 Кл/Н и относительная диэлектрическая проницаемость e = 4,5.

Требуется:

1. Изобразить схему пьезокристалла с заданным количеством пластин.

2. Определить диапазон измерения давления для заданных напряжений

3. Определить систематическую погрешность от влияния внешних физичских величин, в результате чего емкость измерительной цепи Свх увеличится на 5 %.

Решение

Исходные данные сводим в табл. 2.3.

 

Таблица 2.3

Исходные данные

Параметр

Обозначение

Значение

1. Число пластин n

n

 

2. Размеры пластины

а

b

15 мм

15 мм

3. Толщина пластины

h

0,95 мм

4. Наименьшее напряжение

Umin

2 В

5. Наибольшее напряжение

Umах

46 В

2.3.1 Схема пьезокристалла

Схема пьезокристалла приведена на рис. 2.3.

Рис. 2.3. Схема пьезокристалла

2.3.2 Определяем диапазон измерения давления для заданных напряжений

Значения давлений определяем по формуле:

(2.5)

где S – площадь поверхности грани кристалла, м2; Свх – емкость измерительной цепи, пФ; С0 – емкость кристалла, пФ; n – число пластинок.

Емкость пьезокристалла определяем по соотношению

 

С0 = 8,9×e×S/h,

где h – толщина кристалла, м; e = 4,5 – относительная диэлектрическая проницаемость.

С0 = 8,9×4,5×(0,015·0,018)/0,6×10–3 = 0,01081×10–3 пФ.

Па

Па

2.3.3 Определяем систематическую погрешность от влияния внешних физических величин, в результате чего емкость измерительной цепи Свх увеличится на 5 %

Па

Па

Dpmin = p¢min – pmin=6090.90-6060.90=30.30 Па

Dpmax = p¢max – pmax = 152272.72-151515.15=757.57 Па.

Таким образом, увеличение емкость измерительной цепи Свх на 5 % приведет к возникновению мультипликативной систематической погрешности.

 

 

Библиографический список

1. О.А. Леонов, Н.Ж. Шкаруба Курсовое проектирование по метрологии, стандартизации и сертификации: учебное пособие. – М.

2. Курс лекций по дисциплине «Методы и средства измерений, испытаний и контроля», доктор технических наук Леонов О.А.

 


Дата добавления: 2015-11-04; просмотров: 22 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
 | Мастер-класс МК Серединка канзаши (автор iriska)

mybiblioteka.su - 2015-2024 год. (0.021 сек.)