Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Телескоп - прилад, призначений для спостереження небесних світил. Існують телескопи для всіх діапазонів електромагнітного спектра: оптичні телескопи, радіотелескопи, рентгенівські телескопи,



 

 

Телескоп - прилад, призначений для спостереження небесних світил. Існують телескопи для всіх діапазонів електромагнітного спектра: оптичні телескопи, радіотелескопи, рентгенівські телескопи, гамма-телескопи. Крім того, детектори нейтрино часто називають нейтрино телескопами. Також, телескопами можуть називати детектори гравітаційних хвиль.

Оптичні телескопічні системи використовують в астрономії (для спостереження за небесними світилами), в оптиці для різних допоміжних цілей. Також, телескоп може використовуватися в якості зорової труби, для вирішення завдань спостереження за віддаленими об'єктами. Найперші креслення найпростішого лінзового телескопа були виявлені в записах Леонардо да Вінчі. Побудував телескоп у 1608 Ханс Ліпперсхей. Також створення телескопа приписується його сучаснику Захарію Янсен.

Оптичні телескопи

Телескоп представляє собою трубу, встановлену на монтуванні, забезпечену осями для наведення на об'єкт спостереження і стеження за ним. Візуальний телескоп має об'єктив і окуляр. Задня фокальна площина об'єктиву суміщена з передньою фокальною площиною окуляра. У фокальну площину об'єктива замість окуляра може поміщатися фотоплівка або матричний приймач випромінювання. У такому випадку об'єктив телескопа, з точки зору оптики, є фотооб'єктивом. Телескоп фокусується за допомогою фокусера (фокусувального пристрою).

За своєю оптичною схемою більшість телескопів поділяться на:
- Лінзові (рефрактори або діоптричні) - в якості об'єктива використовується лінза або система лінз.
- Дзеркальні (рефлектори або катоптричні) - в якості об'єктива використовується увігнуте дзеркало.
- Дзеркально-лінзові телескопи (катадіоптричні) - в якості об'єктива використовується сферичне дзеркало, а лінза, система лінз або меніск служить для компенсації аберацій.

Крім того, для спостережень Сонця професійні астрономи використовують спеціальні сонячні телескопи, що відрізняються конструктивно від традиційних зоряних телескопів.

Характеристики оптичних телескопів

Оптичний телескоп - це афокальна система (оптична сила дорівнює нулю), що складається з об'єктиву і окуляра. Телескоп збільшує видимий кутовий розмір і видиму яскравість спостережуваних об'єктів. Основними параметрами, які визначають інші характеристики телескопа, є: діаметр об'єктива (апертура) і фокусна відстань об'єктива.
- Роздільна здатність залежить від апертури. Визначається за формулоюr=140/D, де r - кутова роздільна здатність в кутових секундах, а D - діаметр об'єктива в міліметрах.
- Оптичне збільшення визначається відношенням G=F/f, де F і f - фокусні відстані об'єктива та окуляра.
- Діаметр поля зору телескопа S (size of visible sky field-розмір видимого поля неба). Дослідним шляхом встановлено, що діаметр поля зору телескопа, виражений у мінутах дуги, залежить від застосованого збільшення, S=2000/G.
- Відносний отвір телескопа A - це відношення діаметра об'єктива телескопа D до його фокусної відстані F, де D і F виражаються в міліметрах, A=D/F=1/∇=∇-1.
- Світлосила телескопа ∇, ∇=F/D=1/A=A-1.
Відносний отвір телескопа A і світлосила ∇ є важливою характеристикою об'єктива телескопа. Це зворотні один одному величини. Чим більше світлосила – тим менший відносний отвір, і відповідно формується яскравіше зображення у фокальній площині об'єктива телескопа. Але при цьому виходить менше збільшення, яке дає даний об'єктив.
- Проникаюча сила (оптична сила) m - зоряна величина найбільш слабких зірок, видимих з допомогою телескопа при спостереженні в зеніті. Для візуального телескопа може бути оцінена за формулою Боуена m=3+2.5lgD+2.5lgG. Або ж за спрощеною формулою, m=2.1+5lgD.
Проникаюча сила рефлекторів на 1-2 m вище, ніж у рефракторів. Проникаюча сила телескопа сильно залежить від якості оптики, яскравості неба, прозорості атмосфери і її спокою. Рівень і тип оптичних спотворень (аберацій) залежить від конструкції телескопа, і фізичних властивостей його оптичних компонентів - лінз, дзеркал, призм і скляних коректорів.
- Лінійні розміри діаметрів дисків Сонця і Місяця в фокальній площині об'єктива телескопа обчислюються за формулою l=F(30/3440), де l - діаметр диска Сонця у фокусі в міліметрах, а F - фокусна відстань об'єктива у міліметрах.
- Масштаб фотонегативів чи матриці u=3440/F, де u - масштаб в кутових мінутах на міліметр ('/ мм), а F - фокусна відстань об'єктива у міліметрах. Якщо відомі лінійні розміри матриці, її роздільна здатність і розмір її пікселів, то тоді звідси можна обчислити роздільну здатність цифрового знімка в кутових мінутах на піксель.



 

 

Космічні телескопи

Земна атмосфера добре пропускає випромінювання в оптичному (0,3-0,6 мкм), ближньому інфрачервоному (0,6 - 2 мкм) і радіодіапазоні (1 мм - 30 м). Вже в ближньому ультрафіолетовому діапазоні зі зменшенням довжини хвилі прозорість атмосфери сильно погіршується, внаслідок чого спостереження в ультрафіолетовому, рентгенівському і гамма діапазонах стають можливими тільки з космосу. Винятком є реєстрація гамма-випромінювання надвисоких енергій, для якого підходять методи астрофізики космічних променів: високоенергійні гамма-фотони в атмосфері породжують вторинні електрони, які реєструються наземними установками. Прикладом такої системи може служити телескоп CACTUS.

В інфрачервоному діапазоні також сильне поглинання в атмосфері, проте, в області 2-8 мкм є деяка кількість вікон прозорості (як і в міліметровому діапазоні), в яких можна проводити спостереження. Крім того, оскільки велика частина ліній поглинання в інфрачервоному діапазоні належить молекулам води, інфрачервоні спостереження можна проводити в сухих районах Землі (зрозуміло, на тих довжинах хвиль, де утворюються вікна прозорості у зв'язку з відсутністю води). Прикладом такого розміщення телескопа може служити South Pole Telescope, встановлений на південному географічному полюсі, що працює в субміліметровому діапазоні.

У деяких випадках вдається вирішити проблему атмосфери підйомом телескопів чи детекторів в повітря на літаках або стратосферних балонах. Але, найбільші результати досягаються з винесенням телескопів у космос. Космічна астрономія - єдиний спосіб отримати інформацію про всесвіт у короткохвильовому і, здебільшого, в інфрачервоному діапазоні; спосіб поліпшити роздільну здатність радіоінтерферометрів. Оптичні спостереження з космосу не настільки привабливі в світлі сучасного розвитку адаптивної оптики, що дозволяє сильно знизити вплив атмосфери на якість зображення, а також дорожнечу виведення на орбіту телескопа з дзеркалом, яке можна порівняти за розмірами з великими наземними телескопами.

 

 

Астрономічні обсерваторії.
Упродовж тривалого часу заняття астрономією було ледь не приватною справою окремих ентузіастів. Але в XVII ст. було усвідомлено її значення для потреб географії та мореплавання. Розпочалось будівництво перших державних астрономічних обсерваторій (AO): Паризької (1671 p.), Гринвіцької (1675 р.) тощо.
В наш час у світі налічують близько 400 AO. В Україні провідними є Головна астрономічна обсерваторія HAH України (1944 p.), Інститут радіоастрономії з його унікальним декаметровим телескопом УТР-2 під Харковом, Кримське астрофізична обсерваторія (1950 p.). Певні традиції досліджень і спостережень зберігають AO університетів – Львівського (1769 p.), Харківського (1898 p.), Київського (1845 D) Одеського (1871 p.).
Довгий час AO будувались поблизу чи навіть у населених пунктах, з XIX ст. їх почали розташовувати на гірських вершинах. Серед набільших AO світу найвідомішими сьогодні є: введена в дію 1990 p. AO на вершині древньої вулканічної гори Мауна-Кеа (4215 м, о. Гавайї), оголошеної науковим заповідником за свій унікальний астроклімат; тут встановлено кілька 4-метрових телескопів, а також телескопи «Кек», «Джеміні», «Субару»; англійська AO на о. JIa-Лальма (2327 м, 1986 p.), американська AO Лас-Кампанас (2280 м, 1976 р.) у Чилі і там же європейська AO Ла-Сілла (2347 м, 1976 p.), де встановлено «Дуже великий телескоп».
В останні роки не менше половини наукових публікацій з астрономії ґрунтуються на спостереженнях небесних об'єктів із стратостатів, штучних супутників Землі, орбітальних космічних станцій та автоматичних міжпланетних станцій (AMC). В космосі працює ціла низка інфрачервоних, ультрафіолетових, рентгенівських, гамма-обсерваторій, які досліджують небо у всіх діапазонах електромагнітних хвиль, наприклад рентгенівська обсерваторія «Чандра». Важливою для астрономів подією був запуск 25 квітня 1990 р. на орбіту висотою 512 км «Космічного телескопа ім. Габбла» з діаметром дзеркала 2,4 м, який вирішує велику кількість астрофізичних задач. Загалом з 1962 р. для астрономічних досліджень запущено близько 50 ШСЗ та AMC.
Радіотелескопи і радіоінтерферометри.
Радіовипромінювання від космічних об'єктів приймається спеціальними установками, які називаються радіотелескопами (PT). Сучасні радіотелескопи досліджують космічні радіохвилі в довжинах від одного міліметра а о декількох десятків метрів.
Основними складовими частинами типового радіотелескопа є антена і дуже чутливий приймач. Антени PT, які приймають міліметрові, сантиметрові, декаметрові та метрові хвилі – це найчастіше параболічні відбивачі, подібні до дзеркал звичайних оптичних рефлекторів. У фокусі параболоїда встановлюється опромінювач – пристрій, який збирає радіовипромінювання, направлене на нього дзеркалом. Опромінювач передає прийняту енергію на вхід приймача, і після підсилення та виділення заданої частоти сигнал реєструється на стрічці самописного електричного приладу. Сучасні підсилювачі дають змогу виявляти (розрізняти) радіосигнали, що виникають при змінах температури всього на 0,001 K.
Радіоастрономічні дзеркала не вимагають такої точності виготовлення, як оптичні. Щоб дзеркало не спотворювало зображень, його відхилення від заданої параболічної форми не повинно перевищувати 1/8 довжини хвилі, яку він приймає. Наприклад, для довжини хвилі 10 см. досить мати точність дзеркала близько 1 см.. Більше того, дзеркало PT можна робити не суцільним: досить на тягнути металеву сітку на каркас, який надає йому параболічної форми. Нарешті, PT можна зробити нерухомим, якщо замінити поворот дзеркала зміщенням опромінювача. Завдяки таким особливостям PT можуть набагато перевищувати оптичні телескопи у розмірах.
Найбільша у світі радіоастрономічна антена, встановлена у кратері згаслого вулкана Аресібо на острові Пуерто-Ріко, має діаметр 305 м. Нерухома антена, спрямована в зеніт, не дозволяє приймати радіохвилі з будь-якої точки неба, але завдяки добовому обертанню Землі і можливості зміщувати опромінювач більша частина небесної сфери доступна для спостережень.
Інші найбільші радіотелескопи з параболічною антеною встановлено: в Радіоастрономічному інституті ім. M. Планка (Еффельсберг, ФРН) – діаметр антени 100 м, в обсерваторії Грін Бенк у штаті Вірджинія (США) – антена 110x100 м, а також 76-метровий PT в обсерваторії Джодрел Бенк (Англія), 64-метровий PT в обсерваторії Парке (Австралія), 22-метровий PT недалеко від Євпаторії в Криму. Усі вони легко спрямовуються в за дану точку неба поворотом навколо двох осей вертикальної (встановлюється азимут об'єкта) і горизонтальної (установка висоти об'єкта). В подальшому ЕОМ безперервно подає сигнали керуючим пристроям, які ведуть PT услід з об'єктом при його зміщенні, зумовленому добовим обертанням небесної сфери.
Радіотелескопи дуже великих розмірів можуть бути побудовані великої кількості окремих дзеркал, що фокусують випромінювані на один опромінювач. Прикладом є РАТАН-600 («радіотелескоп Академії наук, діаметр 600 м»), встановлений поблизу станиці Зеленчук на Північному Кавказі неподалік від 6-метрового оптично: телескопа. Він являє собою замкнене кільце діаметром 600 м і складається з 900 плоских дзеркал розмірами 2x7,4 м, що утворюють сегмент параболоїда. В такому PT може працювати як усе кільце, та і його частина.
На довжинах хвиль від кількох метрів і більше параболічна антена не застосовується, замість неї використовують системи з великої кількості плоских дипольних антен, електричний зв'язок між якими забезпечує необхідну для PT спрямованість прийому. Caме за таким принципом побудовано найбільший у світі радіотелеског декаметрового діапазону УТР-2, розташований під Харковом.
Використовуючи відоме у фізиці явище інтерференції, дослідники розробили методи радіоінтерферометричних спостережень з використанням двох різних приймачів. Об'єднуючи декілька PT, будують так звані радіоінтерферометри (PI).
На сьогодні найвідомішим PI є введений у дію 1980 p. PT VLA («Very Large Array» - «Дуже велика гратка»), який встановлено в пустельній місцевості штату Нью-Мексико, США. Цей PT складається з 27 повноповоротних 25-метрових параболічних антен, розміщених у формі літери Y з довжиною двох плечей по 21 км, а третього – 19 км. У цьому і аналогічних випадках антени пов'язані між собою електричними лініями.
Розроблено також методи наддалекої радіоінтерферометрії, коли використовують попарно великі антени, розташовані на відстанях до 12000 км. З допомогою таких систем в радіоастрономії вдалось отримати кутове розділення дуже тісних об'єктів порядку 0,0001", що набагато краще, ніж дають оптичні телескопи (для порівняння: кутова роздільна здатність людського ока – 2'). З 1979 р. однією з антен інтерферометра є PT, виведений супутником на орбіту Землі. Завдяки радіоінтерферометрам вдається вивчати структуру далеких радіоджерел.
Телескопи для спостережень у високоенергетичних діапазонах електромагнітних хвиль.
Оскільки земна атмосфера затримує електромагнітні хвилі, коротші за 300 нм, всі приймачі ультрафіолетових, рентгенівських та гамма-променів доводиться виносити за її межі. Значну частину досліджень в ультрафіолеті від 300 нм до 120 нм здійснено за допомогою звичайних телескопів з дзеркалами, покритими алюмінієм, для ще коротших хвиль використовують дзеркала, покриті тонким шаром фтористого магнію, та добре відомі лічильники Гейгера-Мюллера. Особливі труднощі виникають при спостереженнях рентгенівського випромінювання з довжиною хвиль від 0,01 нм до 1 нм. Сучасні методи полірування та шліфування матеріалів не дозволяють виготовити дзеркало з такою високою точністю. Однак виявляється, що при падінні і відбиванні променя під дуже малим кутом до дзеркала вимоги до точності його виготовлення значно послаблюються. Такий телескоп є поєднанням двох дзеркал – параболоїда обертання і гіперболоїда обертання, відбиви поверхні яких покриті шаром хрому і нікелю. Промінь відбивається від першого дзеркала під кутом лише 10 до відбивної поверхні, потрапляє на друге дзеркало, а після цього – у фокальну площину, де й будується зображення, скажімо, Сонця. Усі ж інші промені, що йдуть ближче до головної осі дзеркала, затримуються діафрагмою (непрозорим екраном).
В гамма-діапазоні пристроєм для реєстрації квантів слугують детектори (з лат. – “той, що виявляє”), їх встановлюють у глибоких (до 1500 м) шахтах, у тунелях, прокладених у надрах гір (як-от Ельбрус, Монблан), на дні великих озер, щоб істотно зменшити побічні ефекти.


Дата добавления: 2015-10-21; просмотров: 192 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Телескоп под микроскопом: как он работает? | Темы докладов по психологии по курсу «Психология»

mybiblioteka.su - 2015-2024 год. (0.009 сек.)