Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Строительные материалы и изделия 24 страница



XIX — начале XX в. для устройства бесшовных монолитных полов, по свойствам, близким паркетным; из ксилолита также изготовлялись плитки. В последнее время к ксилолиту вновь возникает интерес у строителей.---------

Фибролит (от лат. fibra— волокно) получают из тонких длинных древесных стружек (/= 50...200 мм; Ь = 2...5 мм; 5 = 0,3...0,5 мм), называемых «древесная шерсть», и портландцемента (реже магнезиаль­ного вяжущего). Смесь из стружек и вяжущего формуется в виде плит, подпрессовывается и выдерживается до затвердевания вяжущего.

Длина плит — 2,4 и 3,0 м; ширина — 0,6 и 1,2 м; толщина — 30...100 мм; средняя плотность плит (марка) — 300; 400 и 500 кг/м3; прочность при изгибе — от 0,4 до 1,5 МПа; теплопроводность — 0,07...0,13 Вт/(м • К); водопоглощение (по массе) — не более 35...40 %.

Фибролитовые плиты применяют в качестве конструкционно-теп­лоизоляционного (марки 400 и 500) и теплоизоляционного (марка 300) материала для заполнения стен, перегородок, утепления перекрытий, но с обязательной защитой поверхностей от продувания.

Благодаря развитой системе открытых пор фибролит обладает хорошими акустическими свойствами, поэтому его используют как звукопоглощающий матерная.

Фибролитовые плиты можно использовать в качестве несъемной опалубки при возведении бетонных стен: в них фибролит остается как теплоизоляционный элемент стены.

’V : ГЛАВА 15. СТРОИТЕЛЬНЫЕ ПЛАСТМАССЫ

""У. ■ 15Л. ОБЩИЕ СВЕДЕНИЯ Л;Л

Пластмассы (пластики) — материалы, обязательным компонентом которых являются полимеры. В период формования изделий полимер находится в вязкотекучем или высокоэластичном состоянии, а в готовых материалах и изделиях — в отвержденном состоянии. Основ­ные виды полимеров, используемые в строительных пластмассах, описаны в гл. 10. Кроме полимеров в состав большинства пластмасс входят наполнители, пластификаторы, красители и специальные до­бавки.

Пластмассы — относительно новый вид материалов. Первые пла­стмассы резина и эбонит (эластичный и твердый продукты вулканиза­ции природного каучука) появились в середине XIX в., когда был открыт процесс вулканизации. В 1872 г. был получен целлулоид — пластмасса на основе модифицированной целлюлозы, а в 1887 г.— галалит — пластмасса на основе казеина, белковой составляющей мо­лока. Первый синтетический полимер — фенол-формальдегидная смола и пластмассы на ее основе — появились в начале XX в. В середине XX в. началось производство пластмасс на основе поливинилхлорида, полистирола и других синтетических полимеров. В 50—60-х годах активно начало развиваться производство пластмасс на базе полиэти­лена, эпоксидных и полиуретановых смол.



В наше время пластмассы заняли заметное место во всех отраслях хозяйства, в том числе и в строительстве. Несмотря на значительно более высокую стоимость, они оказались конкурентоспособными по отношению к традиционным строительным материалам. Основная причина этого объясняется высокой технологичностью пла­стмасс. Они легко перерабатываются в самые различные материалы и изделия, из которых, в свою очередь, чрезвычайно просто получать готовые конструкции. Яркий пример этому — линолеум, настилка которого сводится к раскатыванию рулона материала по поверхности пола и закреплению его клеем. Таким образом получается декоратив­ное, гигиеничное и износостойкое покрытие пола с необходимыми тепло- и звукоизоляционными свойствами.


Свойства пластмасс. У пластмасс довольно необычный для строи­тельных материалов набор свойств (как положительных, так и отрица­тельных):

• высокая прочность при малой плотности (рт < 1500 кг/м3, а у газо­наполненных пластмасс уникально низкая плотность — 50...10 кг/м3);

• более низкий, чем у традиционных материалов, модуль упругости и соответственно высокая деформативность; заметная ползучесть (раз­витие деформаций при длительном воздействии нагрузок);

• высокая износостойкость при малой поверхностной твердости;

» водостойкость, водонепроницаемость и универсальная химиче­ская стойкость (к кислотам, щелочам, растворам солей);

• невысокая теплостойкость (в основном 100...200° С; для некото­рых пластмасс 300...350° С) и зависимость механических свойств от температуры;

• декоративность — способность окрашиваться в яркие тона и принимать нужную текстуру поверхности;

• хорошие электроизоляционные свойства и склонность к накап­ливанию статического электричества;

• склонность к старению (особенно под действием УФ-излучения и кислорода воздуха);

• горючесть, усугубляемая токсичностью продуктов горения;

• экологическая проблемность пластмасс.

Применение пластмасс в строительстве целесообразно и экономи­чески оправданно в таких вариантах, когда при небольшом расходе полимера на единицу продукции (м2 или м3) достигается определенный технико-экономический эффект. Это, например, декоративные и гид­роизоляционные полимерные пленки, листовые облицовочные мате­риалы, покрытия полов, лаки, краски, клеи и мастики, трубы и другие погонажные изделия, санитарно-технические изделия, а также ультра­легкие теплоизоляционные газонаполненные пластмассы (пено- и поропласты).

Состав пластмасс. Основные компоненты пластмасс: полимер, наполнитель, пластификатор, краситель и специальные добавки.

Полимер выполняет роль связующего и определяет основные свой­ства пластмассы.

Наполнитель уменьшает расход полимера и придает пластмассе определенные свойства. По виду и структуре наполнители могут быть порошкообразные (мел, тальк, древесная мука), грубодисперсные (стружка, песок, щебень), волокнистые (стекловолокно, целлюлозные волокна и т. п.), листовые (бумага, древесный шпон и т. п.). Волокни­стые и листовые наполнители являются армирующими наполнителями, существенно повышающими прочность и модуль упругости пластмасс. Так, стеклопластики, углепластики, бумажнослоистые пластики очень прочные и легкие конструкционные материалы. >?

Пластмассы могут быть наполнены (до 90...95 % по объему) возду­хом. Такие материалы, называемые иенопластами, обладают очень высокими теплоизоляционными свойствами.

Пластификаторы — вещества, повышающие эластичность пласт­масс. Например, жесткий поливинилхлорид в линолеуме пластифици­руется слаболетучими вязкими жидкостями (диоктилфталатом, трикрезилфосфатом и др.). Они, проникая между молекулами полиме­ра, повышают их подвижность. Это делает материал пластичным. Пластификаторы также облегчают переработку пластмасс, снижая температуру перехода в вязкопластичное состояние.

Пигменты, применяемые в пластмассах, могут быть как минераль­ные, так и органические. Чтобы пластмасса длительно сохраняла цвета, от пигментов требуется в основном светостойкость, так как полимеры, будучи сами химически инертными, защищают пигменты от других агрессивных воздействий.

------ €табтшаторьг\гантиоксидинты — необходимыйткомпоненгмно=-

гих пластмасс, так как полимеры под действием солнечного света и кислорода воздуха стареют (происходит деструкция полимера и окис­лительная полимеризация), что приводит к потере эксплуатационных свойств и разрушению пластмасс.

Отвердители и вулканизаторы используются в тех случаях, когда необходимо произвести отверждение жидких олигомеров (например, отверждение эпоксидной смолы аминными отвердителями) или сшив­ку макромолекул термореактивного полимера (например, вулканиза­ция каучука серой, отверждение фенолформальдегидных смол уротропином). В любом случае происходит укрупнение молекул исход­ных продуктов с образованием пространственных сеток с помощью низкомолекулярных веществ. В ряде случаев отвердителями могут служить кислород или влага, содержащиеся в воздухе.

Пластмассы и экология. Широкое использование в нашей жизни пластмасс породило новую экологическую проблему. Большинство полимеров и соответственно пластмасс — биологически инертные (безвредные для человека) материалы, поэтому может показаться, что пластмассы — экологически чистые материалы. В действительности это далеко не так. Производство синтетических полимеров связано со сложными и энергоемкими химическими процессами с вредными для человека мономерами, сопровождающимися вредными выбросами в атмосферу.

Готовые полимеры и материалы на их основе (при условии пра­вильно проведенного синтеза и переработки) в большинстве своем безвредны. Однако отслужившие свой век пластмассовые изделия не вписываются в природный цикл: они не гниют и не разлагаются под действием природных агентов, поэтому их количество постоянно увеличивается. При сжигании полимеры разлагаются с выделением токсичных низкомолекулярных продуктов. Пластмассы на основе тер-

мопластичных полимеров могут использоваться вторично, но это не решает полностью проблемы утилизации пластмасс. Один из вариантов решения этой проблемы — получение биологически разлагаемых по­лимеров, разработке которых в настоящее время уделяется серьезное внимание.

15.2. ОСНОВЫ ТЕХНОЛОГИИ ПЛАСТМАСС

Полимерные материалы, как уже говорилось, отличаются техноло­гичностью. Они могут перерабатываться в изделия самыми разнооб­разными методами. При этом параметры переработки (температура и давление) значительно ниже, чем при переработке таких материалов, как металлы, стекло и керамика. Способ обработки и ее режим определяются видом полимера и типом получаемого изделия.

Общая схема производства пластмасс включает традиционные про­цессы — дозировку и приготовление полимерной композиции, формо­вание изделий и стабилизация их формы и физико-механических свойств.

Приготовление композиций производят на смесителях различных систем. Для перемешивания сухих композиций обычно используют турбулентные и шнековые смесители. Специфическим широко исполь­зуемым способом приготовления полимерных композиций является вальцевание.

Вальцевание — операция, при которой масса перетирается в зазоре между обогреваемыми валками, вращающимися в противоположном направлении (рис. 15.1). Вальцевание позволяет равномерно переме­шать компоненты смеси. При многократном пропускании массы через валки полимер в результате термомеханических воздействий переходит в пластично-вязкое состояние. Этот процесс называется пластикация.

Экструдирование — перемешивание массы в обогреваемом шнеко­вом прессе (экструдере) с по­следующим продавливанием массы сквозь решетку для формования полуфабриката в виде гранул (такой экструдер называется гранулятором).

Формование изделий. Вы­бор метода формования зави­сит в основном от вида: получаемой продукции. Так, листовые материалы форму­ются обычно на каландрах,

\ трубы и погонажные про­фильные изделия экструдиру-

j ют, штучные изделия в

t

к____________________________________________


основном формуют литьем под давлением.

Каландрирование — процесс формования полотна заданной толщины и ширины из пластичной смеси (приготовленной, напри­мер, на вальцах) путем однократ­ного пропускания между обогре­ваемыми полированными валками с последовательно уменьшающим­ся зазором. Схемы работы Г-об- разного и Z-образного каландров представлены на рис. 15.2. Калан­дрированием производят полимерные пленки. В частности, большую часть линолеума изготовляют вальцево-каландровым способом. Мно­гослойный линолеум получают горячим дублированием заранее отфор­мованных на каландрах пленок: защитной, декоративной и подк­ладочной (несущей) (см. рис. 15.5).

Экструзия — процесс получения профилированных изделий спо­собом непрерывного выдавливания размягченной массы через формо­образующее отверстие (мундштук). Экструзией производят трубы (рис. 15.3) и погонажные изделия (плинтусы, раскладки, «сайдинг», оконные профили и т. п.). Выпускают специальные экструдеры для формования линолеума (в том числе и двухслойного). На экструдерах формуют полимерные пленки в виде бесшовного рукава. Для этого формуется труба, внутрь которой подается воздух, раздувающий ее в тонкую пленку.

Литьем под давлением с помощью литьевых машин (рис. 15.4) получают небольшие изделия сложной конфигурации из смесей на основе термопластичных полимеров (например, изделия для санитар-

Р и с. 15.3. Схема работы экструдера при производстве труб:

' / г А '■

1 — загрузочный бункер; 2 — шнек; 3 — формующая головка; 4 — калибрующая насадка; 5 —тяну­щее устройство; 6 — пустотообразователь «дорн» ■

 


 

Р и с. 15.4. Схема работы машины для литья под давлением:

а плавление сырьевой массы; б— впрыск расплава в форму; в — размыкание формы; 1 — пор­шень; 2— загрузочный бункер; 3 — нагреватели; 4—• цилиндр; 5— разъемная форма; <5— изделие


 

но-технических устройств, вентиляционные решетки, мелкие плитки и т. п.). Гранулированный полуфабрикат нагревается до вязко-текучего состояния в цилиндре (4) литьевой машины и плунжером (Г) впры­скивается в разъемную форму (5), охлаждаемую водой.

Горячее прессование используют в основном для формования изде­лий из термореактивных полимеров. Так, в частности, получают лис­товые материалы: бумажно-слоистый и деревослоистый пластик, сверхтвердые древесноволокнистые и древесно-стружечные плиты. Для листовых материалов используют многоэтажные прессы с масляным или паровым обогревом плит (/= 120... 150° С). На таких прессах фор­муют одновременно 5... 15 листов. В начале прессования полимер расплавляется, связывая все компоненты, а затем необратимо отверж­дается, фиксируя заданную форму изделия.

Горячим прессованием можно получать пенопласты с помощью веществ — газообразователей, разлагающихся с выделением газа при нагревании, т. е. в тот момент, когда полимер приобретает вязко-пла­стичную консистенцию. Вспенивание происходит при размыкании плит пресса. Получаемый при этом пенопласт имеет на поверхности плиты плотные корочки.

Пенопласты производят и другими методами. Очень простым способом получают полистирольный пенопласт из гранул полистирола, содержащих легкокипящую жидкость — изопентан. Наибольшее коли­чество гранул помещают в замкнутую форму, которую опускают в горячую (85...95° С) воду. Полистирол размягчается, изопентан, вски­пая, вспучивает гранулы. Расширившиеся гранулы занимают весь объем формы, слипаются друг с другом и образуют плиту или изделие другой формы.

Кроме перечисленных способов получения изделий из пластмасс используются еще много других методов: промазывание и пропитка основ; напыление пластмасс, сварка и склеивание.


Как уже отмечалось, технически и экономически выгодно приме­нение пластмасс в строительстве в виде пленочных и листовых отде­лочных материалов, труб и других погонажных изделий, ультралегких газонаполненных пластмасс, а также клеев, мастик и других вспомо­гательных материалов. Большая доля полимерных материалов строи­тельного назначения — материалы для полов.

Материалы для полов могут быть в виде рулонных покрытий — линолеумов и ворсовых (ковровых) покрытий, плиток и жидко-вязких составов, используемых для получения бесшовных покрытий пола.

Рулонные материалы. Линолеум (от лат. linum — лен, ткань и oleum

— масло) впервые появился во второй половине XIX. Он представлял собой грубую ткань, покрытую слоем пластической массы на основе высыхающих растительных масел (например, льняного) и пробковой муки. Эти материалы получили название «линолеум». Подобный ли­нолеум под названием «глифталевый» выпускался вплоть до середины

XX в., когда он уступил место поливинилхлоридному.

В настоящее время производится много разновидностей ПВХ-ли- нолеума. Наиболе полно отвечает требованиям и строителей, и потре­бителей ПВХ-линолеум на теплозвукоизоляционной основе (рис. 15.5). Такой линолеум позволяет настилать полы непосредственно по стяжке без устройства специальных тепло- и звукоизоляционных прослоек. Линолеумные полы удобны в эксплуатации (легко моются и не требуют специального ухода) и декоративны. Однако они не рассчитаны на эксплуатацию в помещениях с интенсивным людским потоком. Для таких условий выпускается специальный линолеум с повышенной износостойкостью.

В последнее время вновь возник интерес к глифталевому линолеуму как к материалу на природном сырье.

Линолеум выпускают в рулонах шириной до 4 м, длиной не менее 12 м. Толщина в зависимости от вида линолеума 1,2...6 мм.

К основанию пола линолеум крепят на специальных мастиках. От правильности настилки во многом зависит его долговечность. Это относится и ко всем остальным полимерным материалам.

•. ъ.... с: V'1

■ ik’iyr'm-;

. 'V’r:,.

•'/ф

Ф.ыо7/:ш

Только при строгом соблюдении правил монтажа и эксплуата­ции пластмассы в полной мере проявляют свои положительные

свойства.

При массовом строительстве типовых зданий наиболее эффектив­ный метод применения линолеума — изготовление на заводе полотнищ размером «на комнату» (с помощью сварки).

К рулонным материалам для полов, кроме линолеума относятся ворсовые (ковровые) покрытия. Они обладают высокими тепло- и зву­коизоляционными свойствами, но уход за ними достаточно труден. Настилка таких полов целесообразна в гостиницах, офисах и других помещениях с малой интенсивностью движения и отсутствием загряз­нений.

Плиточные материалы для полов имеют размер плиток от 30 х 30 до 50 х 50 см и могут быть получены как из ПВХ-материалов, так и на базе ворсовых покрытий. Из плиток можно составлять декоративные покрытия полов, которые можно ремонтировать, заменяя отдельные вышедшие из строя плитки. Слабым местом таких полов являются стыки.

В 90-х годах появился новый вид плиточных покрытий — «ламинат»

— крупноразмерные плитки из твердой древесно-волокнистой плиты, имеющие с лицевой стороны декоративное полимерное покрытие (например, имитирующее паркет) с высокой износостойкостью. Лами- натные покрытия полов легко собираются и разбираются благодаря специальным «замковым» сочленениям.

Бесшовные мастичные полы получают из сырьевых смесей на основе жидко-вязких олигомеров. Составы, содержащие, кроме того, напол­нители и пигменты, наносятся на подготовленное основание пола слоем требуемой толщины (2... 10 м). Через 1...2 суток образуется ровное износостойкое и не имеющее швов покрытие пола. Такие покрытия отличаются водостойкостью, химической стойкостью, износостойко­стью и хорошим сопротивлением ударным нагрузкам.

В зависимости от вида полимерного компонента различают составы на жидких каучукоподобных олигомерах, образующих эластичное по­крытие, и термореактивных смолах (например, эпоксидных), образу­ющих твердые покрытия. Такие полы целесообразны, например, для цехов предприятий пищевой промышленности, спортивных залов, коридоров в школах и т. п.

Отделочные материалы на основе пластмасс могут быть листовыми, пленочными, погонажными и окрасочными (последние рассмотрены в гл. 18).

Бумажно-слоистый пластик — листовой материал размером до 3000 х 1600 мм при толщине 0,5...3 мм, получаемый горячим прессо­ванием 5... 15 слоев бумаги, пропитанной термореактивными полиме­рами: лицевые слои — прозрачным меламиноформальдегидным


полимером, а внутренние — фенолформальдегидным. Для верхнего лицевого слоя используется цветная бумага с рисунком (под дерево, ткань и т. п.), покрытая сверху прозрачной защитной бумагой, также имеющей пропитку.

Бумажно-слоистый пластик обладает высокой для пластмасс по­верхностной твердостью, износо- и теплостойкостью. В основном его применяют для облицовки мебели для кухонь, встроенной мебели и столярных строительных изделий (двери и т. п.); для отделки стен на высоту 1...1,5 м помещений с большой интенсивностью эксплуатации (вестибюли, коридоры), а также, благодаря высокой водостойкости и гигиеничности, помещений ванных, лабораторий и т. п.

Декоративные пленочные материалы — один из наиболее перспек­тивных видов пластмасс для внутренней отделки. Различают отделоч­ные пленки безосновные и с подосновой (бумажной, тканевой).

Безосновные пленочные материалы — тонкие полимерные (главным образом поливинилхлоридные) пленки, окрашенные по всей толщине и имеющие с лицевой стороны рисунок или тиснение, которые ими­тируют древесину, ткань, керамическую плитку и т. п. Пленку выпу­скают в рулонах длиной 150 м, шириной 1500...1600 мм. С тыльной стороны пленка может иметь слой из так называемого «неумирающего» клея, прикрытый специальной защитной бумагой. Такая пленка выпу­скается меньшей ширины (500 мм) и в рулонах длиной 15 м. Беспод- основные пленки используют для отделки древесины, асбестоце­ментных листов и др.

Пленки на основе — рулонный отделочный материал, в котором цветная, обычно поливинилхлоридная, пленка сдублирована с бумаж­ной или тканевой подосновой. Примером такого материала могут служить моющиеся обои, представляющие собой тонкую полимерную пленку, сформированную тем или иным способом (напылением, на­мазкой, дублированием) на поверхности бумажной подосновы. Такие материалы применяют для отделки стен, как и обычные обои, но там, где будет полезна их повышенная влагостойкость и износостойкость (например, для кухонь, прихожих, коридоров в больницах).

Пленки для натяжных потолков — новый вариант пленочного от­делочного материала. Такие пленки имеют высокую упругость и проч­ность и могут быть окрашены в любые цвета. Их с большим усилием натягивают и закрепляют на арматуре, установленной на стене. При этом образуется подвесной декоративный потолок, за которым на перекрытии проходят всевозможные коммуникации (электропроводка, вентиляции и т. п.). Применяют натяжные потолки в магазинах, кафе, офисах и т. п.

Облицовочные листы и рейки (сайдинг) имитируют традиционные виды облицовки зданий — дерево, кирпич, природный камень. Наи­большее распространение для облицовки индивидуальных домов, тор­говых павильонов и других сооружений подобного типа приобрели

материалы, имитирующие облицовоч­ную доску «вагонку»,— пластмассовые рейки под названием «сайдинг». Они имеют текстуру древесины и могут бьггь окрашены в любые цвета. Рейки сайдин­га легко соединяются друг с другом. По­лучают рейки либо экструзией из ПВХ-композиций, либо нанесением по­лимерных пленок на металлическую (алюминиевую) основу.

Листовые полимерные облицовоч- HBie материалы, имитирующие, напри­мер, кирпичную кладку, кладку из при­родного камня, изготавливают из композиций на основе термопластов.

-Необходимая“текстура-образуется“путем—лени5ЬШетвв^в—нмшаданкняуне—

„ л г- ни; г — нащельники; д — плинтус

горячего прессования листов-полуфаб­рикатов, которвш могут быть окрашены как в массе, так и по поверхности.

Погонажные изделия — длинномерные изделия разнообразных про­филей: плинтусы, рейки, поручни для лестничных перил, раскладки для крепления листовых материалов, нащельники и т. п. (рис. 15.6). Получают погонажные изделия главным образом из поливинилхлорид­ных композиций методом экструзии.

Использование полимерных погонажных изделий — одна из сторон малой индустриализации строительства. Например, применение пла­стмассовых поручней из пластифицированного ПВХ существенно ус­коряет отделку лестниц, Поручни, поступающие на стройку в виде бухт, нагревают в воде до 60...70° С. В размягченном виде они легко надева­ются на металлические перила, а после остывания плотно охватывают их.

Конструкционно-отделочные пластмассы. К ним относятся плитные и листовые материалы: древесностружечные плиты (см. § 3.6), древес­нослоистые пластики, сверхтвердые древесноволокнистые плиты, стеклопластик и другие материалы, а также формованные элементы для архитектуры малых форм: киосков, павильонов и т. п.

Стеклопластики — листовой материал, получаемый пропиткой стеклянного волокна или стеклоткани термореактивными олигомера­ми (смолами) с последующим их отверждением. Кроме стеклянных волокон, возможно применение волокон более прочных и с большим модулем упругости (например, углеродных). Стеклянное волокно (или стеклянная ткань) играет роль арматуры, благодаря чему обеспечивается высокая прочность материала при изгибе и растяжении (200...500 МПа) при относительно небольшой плотности (1500... 1700 кг/м3). Роль полимерного связующего заключается в том, чтобы придать
материалу монолитность и обеспечить равномерное распределение напряжений от внешних нагрузок между всеми стеклянными волок­нами. Стеклопластики — типичный композиционный материал.

Чаще всего для пропитки стекловолокна применяют ненасыщен­ные полиэфирные или эпоксидные смолы, обладающие высокой проч­ностью и адгезией к стекловолокну и химической стойкостью. Стеклопластики выпускают в виде плоских или волнистых листов, окрашенных в различные цвета, которые используют для декоративной наружной облицовки и устройства кровель. Кроме того, из стеклопла­стиков изготовляют трехслойные пенопластовые панели, трубы, сани­тарно-технические изделия и покровные элементы для трубопроводов и химических аппаратов и т. п.

Древеснослоистые пластики — листовой материал, получаемый го­рячим прессованием древесного шпона, пропитанного термореактив­ными полимерами (обычно фенолоформальдегидными),— прочный водо-, масло- и бензостойкий материал, используемый для каркасных перегородок, клееных деревянных конструкций и других целей (на­пример, для изготовления точной опалубки многоразового использо­вания).

Теплоизоляционные полимерные материалы — самые эффективные теплоизоляционные материалы с пористостью более 90 %. Они могут быть в виде плит или других иделий, а также в виде жидких композиций, вспениваемых и отверждаемых на месте укладки (подробно полимер­ные теплоизоляционные материалы описаны в § 17.3).

Кровельные, гидроизоляционные и санитарно-технические материа­лы и изделия. Использование полимеров для получения кровельных, гидроизоляционных и санитарно-технических материалов и изделий базируется на их высокой водостойкости и коррозионной стойкости.

При получении кровельных и гидроизоляционных материалов поли- меры используют в роли:______________________________________________

• модификаторов традиционных битумных материалов;

• самостоятельных материалов в виде пленок, мембран и мастичных составов (подробнее см. § 16.4).

Полимерные трубы с каждым годом находят все более широкое применение в строительстве, вытесняя традиционные стальные и чугунные. Пластмассовые трубы легче металлических в 4...5 раз при одинаковой пропускной способности. Они н^йокрываются отложени­ями и не корродируют даже в воде с агрессивными веществами. Благодаря низкой теплопроводности вода в пластмассовых трубах имеет меньше шансов замерзнуть; при этом даже в случае замерзания труба не лопается благодаря пластичности пластмассы.

Труб,ы в основном изготовляют методом экструзии из композиций на основе термопластов (полиэтилена, полипропилена, поливинилх­лорида и др.). Такие трубы обладают невысокой теплостойкостью (не 298


«*Лк» ал,-ЩШУ >

ЩЦУцУл: У. а) б) в)

Рис. 15.7. Изделия для канализации из ПВХ:

а — труба с муфтой колокольного типа; б — угол 90° с муфтой колокольного типа; в — отвод с муфтой колокольного типа и контрольным глазком


 
 

выше 60...80° С) и рекомендуются для холодного водоснабжения и канализации. Из эластопластов изготовляют гибкие шланги.

Кроме труб выпускают полный набор фитингов (от англ. fit — монтировать) соединительных деталей трубопроводов, поворотов, пе­реходов, разветвлений и т. п. (рис. 15.7). Монтаж систем из пластмас­совых труб и фитингов проще и быстрее, чем из металлических.

Для работы с жидкостями при более высоких температурах и под давлением рационально применять стеклопластиковые трубы, тепло­стойкость которых на эпоксидном связующем превышает 200° С.

Прозрачные ударопрочные трубы, используемые, например, в пи­щевой или химической промышленности для транспортировки жид­костей, производят из полиметилметакрилата методом сварки из лис­товых заготовок.

Пластмассы широко применяют для изготовления санитарно-тех­нических изделий и деталей для них: сифонов, деталей смесителей, смывных бачков, соединительных шлангов, вентиляционных решеток и т. п.

Клеи на основе полимеров. Клеевое соединение элементов строи­тельных конструкций — один из самых прогрессивных методов в стро­ительной технологии и в производстве строительных изделий. Подав­ляющее количество клеев, используемых для этих целей,— клеи на основе полимеров. Они выгодно отличаются от традиционных нату­ральных (казеинового, столярного и т. п.) клеев и клея на основе жидкого стекла (силикатный клей) большим разнообразием свойств и долговечностью. Полимерные клеи обладают высокой клеящей спо­собностью к самым разнообразным материалам, биостойки, многие из них водостойки.

Полимерные клеи можно разделить на три типа:

1. На основе водных растворов и водных дисперсий полимеров — это так называемые водоразбавляемые клеи. Например, клей ПВА (на


Дата добавления: 2015-10-21; просмотров: 29 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.034 сек.)







<== предыдущая лекция | следующая лекция ==>