Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Б. Мандельброт. Фрактальная геометрия природы



Б. Мандельброт. Фрактальная геометрия природы

Геометрию часто называют "холодной" и "сухой". Одна из причин этого состоит в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака - не сферы, горы - не конусы, береговые линии - не окружности, древесная кора не гладкая, молния распространяется не по прямой. Многие природные объекты настолько иррегулярны и фрагментированы, что по сравнению со стандартной геометрией Евклида природа обладает не просто большей сложностью, а сложностью совершенно иного уровня.
Бенуа Мандельброт.

Бенуа Мандельброт (фр. Benoît Mandelbrot; род. 20 ноября 1924, Варшава) — французский математик.
Основатель и ведущий исследователь в области фрактальной геометрии. Лауреат премии Вольфа по физике (1993).
Бенуа Мандельброт родился в Варшаве в 1924 году в семье литовских евреев. Но уже в 1936 году семья Бенуа Мандельброта эмигрировала во Францию, в Париж. В Париже он попал под влияние своего дяди Шолема Мандельбройта, известного парижского математика, члена группы математиков, известной под общим псевдонимом «Николя Бурбаки».
После начала войны Мандельброты бежали на свободный от оккупации юг Франции, в городок Тюль. Там Бенуа Мандельброт пошел в школу, но вскоре потерял интерес к учебе. Поэтому к шестнадцати годам он еле знал алфавит и таблицу умножения до пяти.
Но у Бенуа Мандельброта открылся необычный математический дар, который позволил ему сразу после войны стать студентом Сорбонны. Оказалось, что у Бенуа великолепное пространственное воображение. Он даже алгебраические задачи решал геометрическим способом. Оригинальность его решений позволила Бенуа Мандельброту поступить в университет.
Окончив университет, Бенуа Мандельброт сначала стал «чистым математиком». Он получил докторскую степень.
В 1958 он переехал в США, где приступил к работе в научно-исследовательском центре IBM в Йорктауне, поскольку IBM в то время занималась как раз интересными Бенуа Мандельброту областями математики.
Работая в IBM, Бенуа Мандельброт ушел далеко в сторону от чисто прикладных проблем компании. Он работал в области лингвистики, теории игр, экономики, аэронавтики, географии, физиологии, астрономии, физики. Ему нравилось именно переключаться с одной темы на другую, изучать различные направления.
Исследуя экономику, Бенуа Мандельброт обнаружил, что произвольные внешне колебания цены могут следовать скрытому математическому порядку во времени, который не описывается стандартными кривыми.
Бенуа Мандельброт занялся изучением статистики цен на хлопок за большой период времени (более ста лет). Колебания цен в течение дня казались случайными, но Мандельброт смог выяснить тенденцию их изменения. Он проследил симметрию в длительных колебаниях цены и колебаниях кратковременных. Это открытие оказалось неожиданностью для экономистов.
По сути, Бенуа Мандельброт применил для решения этой проблемы зачатки своего рекурсивного (фрактального) метода.
Само понятие «фрактал» придумал сам Бенуа Мандельброт (от латинского fractus, означающего «сломанный, разбитый»).
Бенуа Мандельброт родился в Варшаве в еврейской семье из Литвы. Его семья переехала по Францию, когда Бенуа было 11 лет. Он получил образование во Франции. В 1952 году в Университете Парижа Бенуа Мандельброт получил степень доктора математических наук.



Фрактали:

Предисловие
1. Тема
2. Иррегулярное и фрагментированное в Природе
3. Размерность, симметрия, расходимость
4. Вариации на тему
5. Какова протяженность побережья Британии
6. Снежинки и другие кривые Коха
7. Покорение чудовищных кривых Пеано
8. Фрактальные события и канторова пыль
9. Фрактальный взгляд на скопления галактик
10. Геометрия турбулентности; перемежаемость
12. Соотношения между длиной, площадью и объемом
13. Острова, кластеры и перколяция
14. Ветвление и фрактальные решетки
15. Поверхности положительного объема. Живая плоть
17. Деревья и диаметрический показатель
20. Фрактальные аттракторы и фрактальные эволюции
21. Случай как инструмент для создания моделей
23. Случайный творог
24. Случайные цепи и сквиг-кривые
25. Броуновское движение и броуновские фракталы
26. Случайные кривые срединного смещения
27. Стоки рек. Масштабно-инвариантные сети и шумы
28. Рельеф и береговые линии
29. Площади островов, озер и чаш
31. Тремы в интервале. Линейная пыль Леви
32. Субординация. Упорядоченные галактики
33. Круговые и сферические тремы
34. Текстура
35. Обобщенные тремы и управление текстурой
38. Масштабная инвариантность и степенные законы без геометрии
39. Математическое приложение и дополнения
40. Биографические очерки
41. Исторические очерки
42. Эпилог: путь к фракталам
Авторы компьютерной графики
Благодарности
Указатель избранных размерностей
Дополнение, вошедшее во второе издание
Литература
Предметный указатель

ИРРЕГУЛЯРНОЕ И ФРАГМЕНТИРОВАННОЕ В ПРИРОДЕ
«Красота всегда относительна... Не следует... полагать, что берега океана и впрямь бесформенны только потому, что их форма отлична от правильной формы построенных нами причалов; форму гор нельзя считать неправильной на основании того, что они не являются правильными конусами или пирамидами; из того, что расстояния между звездами неодинаковы, еще не следует, что их разбросала по небу неумелая рука.
Эти неправильности существуют только в нашем воображении, на самом же деле они таковыми не являются и никак не мешают истинным проявлениям жизни на Земле, ни в царстве растений и животных, ни среди людей». Эти слова английского ученого 17 в. Ричарда Бентли (источник вдохновения для начальных строк настоящего эссе) свидетельствуют о том, что идея объединить формы берегов, гор и небесных объектов и противопоставить их евклидовым построениям возникла в умах людей уже очень давно.

ИЗ-ПОД ПЕРА ЖАНА ПЕРРЕНА
Прислушаемся теперь к голосу, обладатель которого несколько более близок к нам - как по времени, так и по роду занятий. Прежде чем мы приступим к обсуждению неправильности и фрагментированности береговых линий, броуновских траекторий и других рисунков Природы, исследуемых в настоящем эссе, позвольте мне представить на ваш суд несколько цитат из одной статьи Жана Перрена [468] в моем вольном переводе. Последующие работы Перрена, посвященные броуновскому движению, принесли ему Нобелевскую премию и стимулировали развитие теории вероятности. Я же намерен привести здесь некоторые строки из его раннего философского манифеста. Хотя этот текст в несколько измененном виде появился позднее в предисловии к книге «Атомы» [470], заметили его, похоже, только тогда, когда я процитировал его в первом
(французском) издании моего эссе. Я слишком поздно обратил внимание на это обстоятельство, чтобы оно как-то существенно повлияло на книгу, однако этот отрывок вдохновлял меня в час нужды, не говоря уже о том, что он являет собой прекрасный образец ораторского искусства. «Общеизвестно, что хороший учитель, давая ученикам строгое определение непрерывности, покажет прежде, что лежащая в основе этого понятия идея хорошо им знакома. Он построит на доске какую-нибудь вполне непрерывную кривую и, перемещая вдоль нее линейку, скажет: «Как видите, касательная существует во всех точках кривой». Или, например, для того, чтобы ознакомить учеников с понятием истинной скорости движущегося объекта в некоторой точке его траектории, учитель говорит: «Вы, разумеется, понимаете, что среднее между значениями скорости в двух соседних точках не изменяется сколько-нибудь существенно при приближении этих точек друг к другу на бесконечно малое расстояние». И многие люди, полагая, что для некоторых всем знакомых движений такой взгляд достаточно точно отражает положение вещей, не желают замечать, что все не так просто. Математики, однако, прекрасно понимают, что попытка показать при помощи построения кривых то, что каждая непрерывная функция имеет производную, по меньшей мере, наивна. Хотя дифференцируемые функции и являются самыми простыми, они все же представляют собой исключение. Говоря языком геометрии, кривые, не имеющие касательных, могут считаться правилом, в то время как правильные кривые такие, например, как окружность - любопытным, но весьма частным случаем. Изучение же общего случая представляется, на первый взгляд, остроумным, но совершенно искусственным упражнением для праздного интеллекта - этакое стремление к абсолютной точности, доведенное до абсурда. Те, кто впервые слышит о кривых без касательных или о функциях без производных, часто склонны полагать, что в Природе не существует ни подобных сложных конструкций, ни даже намека на них. Это, однако, неверно - математики со своей логикой оказываются ближе к реальности, нежели физики с их практическими представлениями.
В качестве иллюстрации к этому утверждению взглянем непредвзято
на некоторые экспериментальные данные. Возьмем, например, одну из белых чешуек, которые образуются при добавлении соли в раствор мыла. С некоторого расстояния может показаться, что чешуйка имеет четко очерченный контур, однако при более близком рассмотрении четкость исчезает. Мы больше не можем провести мысленно касательную к любой точке этого контура. Вполне удовлетворительная, на первый взгляд, линия оказывается либо перпендикулярной к границе, либо наклонной. Использование увеличительного стекла или даже микроскопа ничуть не уменьшает неопределенности при каждом очередном увеличении возникают новые неправильности, и нам никак не удается получить такую же четкую и гладкую границу, как, например, у стального шарика. Таким образом, если считать последний классической иллюстрацией непрерывности, то на примере нашей чешуйки можно сформулировать более общее понятие непрерывной функции, не имеющей производной.» Прервемся ненадолго, чтобы взглянуть на рисунки 25 и 26. Здесь и далее черно-белые иллюстрации приводятся сразу же после соответствующей главы и нумеруются номерами страниц, на которых они расположены. Цветные иллюстрации собраны в отдельной вклейке, причем пояснения к этим иллюстрациям не связаны непосредственно с остальным содержанием книги.
Продолжим цитату. «Не следует забывать о том, что данная неопределенность положения касательной в некоторой точке контура ни в коей мере не то же самое, что и неопределенность, наблюдаемая, скажем, на карте побережья Бретани. Хотя карта также будет изменяться в зависимости от масштаба, мы всегда сможем найти касательную, так как карта - это всего лишь условный рисунок. Напротив, существенным свойством нашей чешуйки, равно как и самого побережья, является следующее: можно только предполагать - так как увидеть этого мы не в состоянии, - что их границы в любом масштабе включают в себя такие детали, которые полностью исключают возможность существования какой-либо определенной касательной. Не покидая экспериментально подтверждаемой реальности, мы наблюдаем под микроскопом проявление броуновского движения на примере малой частицы, взвешенной в толще жидкости (см. рис. 29). Мы видим, что направление прямой, соединяющей точки, соответствующие двум очень близким во времени положениям частицы, изменяется по мере уменьшения временного промежутка между двумя измерениями совершенно беспорядочно. Беспристрастный наблюдатель заключит из этого, что он имеет дело с функцией, не имеющей производной, а вовсе не с кривой, к которой в любой ее точке можно провести касательную. Хотя близкое рассмотрение любого объекта ведет в общем случае к обнаружению его в высшей степени неправильной структуры, не следует забывать и о том, что можно весьма достоверно оценить его свойства с помощью непрерывных функций. Древесина бесконечно пориста, однако нам удобнее считать, что поверхность отпиленного и обструганного деревянного бруска имеет конечную площадь. Иными словами, в определенном масштабе и при определенных методах исследования можно полагать, что многие феномены представимы в виде правильных непрерывных функций - так, оборачивая кусок губки фольгой, вовсе не
обязательно точно следовать всем изгибам сложной поверхности губки. Более того, если мы считаем, что материя обладает бесконечно зернистой структурой - а это вполне в духе атомной теории, - то возможность применять к реальности строгое математическое понятие непрерывности сводится почти на нет. Рассмотрим, например, способ, с помощью которого мы определяем плотность воздуха в заданной точке в заданный момент времени.
Мы мысленно рисуем сферу объема v с центром в упомянутой точке, содержащую массу воздуха m. Отношение m/v определяет среднюю плотность воздуха внутри сферы, истинной же плотностью мы считаем некоторое предельное значение этого отношения. Это понятие, однако, предполагает, что средняя плотность для сфер, меньших некоторого объема, практически постоянна. Средняя плотность воздуха в сфере объемом 1 000 м3 может значительно отличаться от плотности в сфере объемом 1 см3, но для сфер объемом в 1 см3 и 0,001 мм3 ожидаемая разница составит величину лишь порядка 10-6.
Предположим, что объем постепенно уменьшается. Вместо того, чтобы уменьшаться вместе с ним, флуктуации только растут. Для масштабов, при которых наблюдается броуновское движение, флуктуации достигают уже 10-3, а когда радиус нашей гипотетической сферы достигает сотых долей микрона, порядок флуктуаций возрастает до 0,2. Еще немного, и радиус малой сферы достигает размеров молекулярного порядка. Будучи помещена внутрь области, заполненной газом, такая сфера, в общем случае, оказывается в межмолекулярном пространстве, где средняя плотность по определению обращается в НУЛЬ. Истинная плотность в данной точке также обращается в НУЛЬ. Но приблизительно в одном случае из тысячи точка окажется внутри молекулы, и средняя плотность в ней будет в тысячи раз больше, чем то значение, которое мы обычно считаем истинной плотностью газа. Предположим, что радиус сферы продолжает постепенно уменьшаться. Вскоре, если не возникнет никаких исключительных обстоятельств, сфера совершенно опустеет и далее будет оставаться пустой, поскольку пусто межатомное пространство. Истинная плотность обращается в НУЛЬ почти везде - за исключением бесконечного множества изолированных точек, где она бесконечно возрастает. Похожие соображения можно применить и к другим физическим свойствам - таким, например, как скорость, давление или температура. Вглядываясь в нарисованную нами неизбежно несовершенную картину Вселенной при все возрастающем увеличении, мы видим, что поведение этих свойств становится все более нерегулярным. Функция, описывающая любое физическое свойство, образует в межматериальном пространстве континуум, состоящий из бесконечного количества сингулярных точек. Пример бесконечно разрывной материи - непрерывный эфир с вкраплениями крошечных звезд - являет нам космическая Вселенная. Разумеется, все те заключения, к которым мы пришли выше, могли бы быть достигнуты с помощью воображаемой сферы, с легкостью вмещающей в себя планеты, солнечные системы, звезды и туманности... Позволим себе высказать одно предположение, достаточно произвольное, но непротиворечивое. Наверняка мы вскоре столкнемся с такими случаями, для описания которых окажется проще использовать недифференцируемые функции, нежели те, что имеют производную. Когда такое произойдет, практическая ценность математических исследований иррегулярных континуумов станет очевидной всем». И далее, подчеркивая мысль, с новой строки: «Однако это - всего лишь мечтания. Пока».

КОГДА «ВЫСТАВКА ЧУДОВИЩ» СТАНОВИТСЯ МУЗЕЕМ НАУКИ
Часть из тех мечтаний, относящаяся к броуновскому движению, и впрямь воплотилась в реальности еще при жизни Перрена. Случилось так, что его статья [469] привлекла внимание Норберта Винера, причем восторженный и удивленный Винер тут же решил должным образом исследовать и строго определить недифференцируемую первую модель броуновского движения ([595], с. 38-39 или [596], с. 2-3). Эта модель до сих пор сохраняет свое значение, хотя физики и указывают на то, что ее недифференцируемость проистекает из злостной идеализации, а именно -- из пренебрежения инерцией. Поступая так, физики поворачиваются спиной к наиболее существенному для данного
труда свойству модели Винера. Что касается других предсказываемых Перреном применений математических исследований в физике, то до сегодняшнего дня никто даже не пытался этим заниматься. Собрание множеств, о которых упоминал Перрен (кривые Вейерштрасса, канторова пыль и подобные им), до сих пор остается предметом изучения «чистой математики». Некоторые авторы (например, Виленкин [573]) называют это собрание «Музеем математических искусств», не подозревая (я уверен), насколько точно и полно доказываются эти слова в данном эссе. Из первой главы мы помним, что кое-кто (начиная еще с Анри Пуанкаре) предпочитает использовать для упомянутого собрания словосочетание «Выставка чудовищ» - подобно Джону Валлису с его «Трактатом об алгебре» (1685), где четвертое измерение было описано как «чудовище в Природе, не более возможное, чем химера либо кентавр». Одна из задач настоящего эссе состоит в том, чтобы посредством беспристрастного рассмотрения всевозможных явных «случаев» показать читателю, что та же самая «Выставка» с полным правом может
называться «Музеем науки». Можно только похвалить математиков за то, что они в столь давние времена додумались до первых из упомянутых множеств; однако то, что те же математики так долго отпугивали нас от этих множеств, достойно всяческого осуждения.

 


Дата добавления: 2015-10-21; просмотров: 50 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Фотоотчёт «Обратите внимание» | Фракталы (Fractals) являются одним из индикаторов в торговой системе Била Вильямса (Билл Вильямс «Торговый Хаос» и «Новые Измерения Биржевой Торговли», - Аналитика, М. 2000). Считается, что он же

mybiblioteka.su - 2015-2024 год. (0.012 сек.)