Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Международная образовательная корпорация



Международная образовательная корпорация

Казахская головная архитектурно-строительная академия

Активный раздаточный материал

Математика 1

Кредит 3

Лекция № 14. Определенный интеграл. Определенный интеграл как предел интегральных сумм. Основные свойства определенного интеграла. Формула Ньютона – Лейбница. Вычисление определенного интеграла: интегрирование по частям и подстановкой.

 

ФОЕНП

1-й семестр

2015-2016 уч.г.

Ассоц.проф. Буганова С.Н.

Краткое содержание лекции

 

Пусть на отрезке [a, b] задана непрерывная функция f(x).

y

M

 

 

m

0 a xi b x

Обозначим m и M наименьшее и наибольшее значение функции на отрезке [a, b]

Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками.

x0 < x1 < x2 < … < xn

Тогда x1 – x0 = Dx1, x2 – x1 = Dx2, …,xn – xn-1 = Dxn;

На каждом из полученных отрезков найдем наименьшее и наибольшее значение функции.

[x0, x1] ® m1, M1; [x1, x2] ® m2, M2; … [xn-1, xn] ® mn, Mn.

Составим суммы: n = m1Dx1 + m2Dx2 + … +mnDxn =

n = M1Dx1 + M2Dx2 + … + MnDxn =

Сумма называется нижней интегральной суммой, а сумма верхней интегральной суммой.

Т.к. mi £ Mi, то n £ n, а m(b – a) £ n £ n £ M(b – a)

Внутри каждого отрезка выберем некоторую точку e.

x0 < e1 < x1, x1 < e < x2, …, xn-1 < e < xn.

Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b].

Sn = f(e1)Dx1 + f(e2)Dx2 + … + f(en)Dxn =

Тогда можно записать: miDxi £ f(ei)Dxi £ MiDxi

Следовательно,

Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу – вписанной ломаной.

Обозначим maxDxi – наибольший отрезок разбиения, а minDxi – наименьший. Если maxDxi® 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.

Если , то

Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b]. Обозначение: а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.

Свойства определенного интеграла.

1)

2)

3)

4) Если f(x) £ j(x) на отрезке [a, b] a < b, то

5) Если m и M – соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a, b], то:

Вычисление определенного интеграла.

Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то



это выражение известно под названием формулы Ньютона – Лейбница.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.

Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

Замена переменных. Пусть задан интеграл , где f(x) – непрерывная функция на отрезке [a, b].

Введем новую переменную в соответствии с формулой x = j(t).

Тогда если

1) j(a) = а, j(b) = b

2) j(t) и j¢(t) непрерывны на отрезке [a, b]

3) f(j(t)) определена на отрезке [a, b], то

, Тогда

Интегрирование по частям.

Если функции u = j(x) и v = y(x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:

Задание на СРС

1. Несобственные интегралы. (конспект) [1,2].

Задание на СРСП

1. ИДЗ-9.1 [1. стр.164].

Контрольные вопросы:

1. Дайте определение определенного интеграла. 2. Формула Ньютона-Лейбница.

3. Формула замены переменной в определенном интеграле

4. Определенный интеграл в полярной системе координат

5. Формула интегрирования по частям в определенном интеграле

Глоссарий

Қазақша

Русский

English

1.

Алғашқы функция

Первообразная функция

Antiderivative

2.

Интегралдау

Интегрирование

Integration

3.

Айнымалы ауыстыру

Замена переменной

Transformation of variable

4.

Бөлшектеп интегралдау

Интегрирование по частям

Integration by parts

5.

Интеграл астындағы функция

Подынтегральная функция

Integrand

Литература:

Основная

  1. А.П. Рябушко. Индивидуальные задания по высшей математике, т.2. - Мн.: Выш. Школа, 2011.

2. Данко П.Е., Попов А.Г. Высшая математика в упражнениях и задачах: Учебное пособие для втузов. - М.: Оникс, 2007.

Дополнительная

3. Сыдыкова Д.К. Математика I. Методическое руководство к выполнению заданий для СРС. -Алматы: КазГАСА, 2008.

4. Сыдыкова Д.К. «Курс Математики- I», Модуль I, II для дистанционного обучения. Электронный учебник.-Алматы: КазГАСА, 2012.

5. www.studentlibrary.ru

6. http://sferaznaniy.ru/vysshaya-matematika.

 

 


Дата добавления: 2015-10-21; просмотров: 21 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Международная образовательная корпорация | Международная образовательная корпорация

mybiblioteka.su - 2015-2024 год. (0.012 сек.)