Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

19.Потери мощности в трансформаторе. КПД трансформатора. Зависимость КПД трансформатора от его загрузки и от коэффициента мощности нагрузки.



19.Потери мощности в трансформаторе. КПД трансформатора. Зависимость КПД трансформатора от его загрузки и от коэффициента мощности нагрузки.

Основными характеристиками трансформатора являются прежде всего напряжение обмоток и передаваемая трансформатором мощность. Передача мощности от одной обмотки к другой происходит электромагнитным путем, при этом часть мощности, поступающей к трансформатору из питающей электрической сети, теряется в трансформаторе. Потерянную часть мощности называют потерями.

При передаче мощности через трансформатор напряжение на вторичных обмотках изменяется при изменении нагрузки за счет падения напряжения в трансформаторе, которое определяется сопротивлением короткого замыкания. Потери мощности в трансформаторе и напряжение короткого замыкания также являются важными характеристиками. Они определяют экономичность работы трасформатора и режим работы электрической сети.

Потери мощности в трансформаторе являются одной из основных характеристик экономичности конструкции трансформатора. Полные нормированные потери состоят из потерь холостого хода (XX) и потерь короткого замыкания (КЗ). При холостом ходе (нагрузка не присоединена), когда ток протекает только по обмотке, присоединенной к источнику питания, а в других обмотках тока нет, мощность, потребляемая от сети, расходуется на создание магнитного потока холостого хода, т.е. на намагничивание магнитопровода, состоящего из листов трансформаторной стали. Поскольку переменный ток изменяет свое направление, то направление магнитного потока также меняется. Это значит, что сталь намагничивается и размагничивается попеременно. При изменении тока от максимума до нуля сталь размагничивается, магнитная индукция уменьшается, но с некоторым запаздыванием, т.е. размагничивание задерживается (при достижении нулевого значения тока индукция не равна нулю точка N). Задерживание в перемагничивании является следствием сопротивления стали переориентировке элементарных магнитов.

Кривая намагничивания при перемене направления тока образует так называемую петлю гистерезиса, которая различна для каждого сорта стали и зависит от максимальной магнитной индукции Втах. Площадь, охватываемая петлей, соответствует мощности, затрачиваемой на намагничивание. Так как при перемагничивании сталь нагревается, электрическая энергия, подводимая к трансформатору, преобразуется в тепловую и рассеивается в окружающее пространство, т.е. безвозвратно теряется. В этом физически и заключаются потери мощности на перемагничивание.



Кроме потерь на гистерезис при протекании магнитного потока по магнитопроводу возникают потери на вихревые токи. Как известно, магнитный поток индуктирует электродвижущую силу (ЭДС), создающую ток не только в обмотке, находящейся на стержне магнитопровода, но и в самом его металле. Вихревые токи протекают по замкнутому контуру (вихревое движение) в месте стали в направлении, перпендикулярном направлению магнитного потока. Для уменьшения вихревых токов магнитопровод собирают из отдельных изолированных листов стали. При этом чем тоньше лист, тем меньше элементарная ЭДС, меньше созданный ею вихревой ток, т.е. меньше потери мощности от вихревых токов. Эти потери тоже нагревают магнитопровод. Для уменьшения вихревых токов, потерь и нагревов увеличивают электрическое сопротивление стали путем введения в металл присадок.

В любом трансформаторе расход материалов должен быть оптимальным. При заданной индукции в магнитопроводе его габарит определяет мощность трансформатора. Поэтому стараются, чтобы в сечении стержня магнитопровода было как можно больше стали, т.е. при выбранном наружном размере коэффициент заполнения кз должен быть наибольшим. Это достигается применением наиболее тонкого слоя изоляции между листами стали. В настоящее время применяется сталь с тонким жаростойким покрытием, наносимым в процессе изготовления стали и дающим возможность получить кз = 0,950,96.

При изготовлении трансформатора вследствие различных технологических операций со сталью ее качество в готовой конструкции несколько ухудшается и потери в конструкции получаются примерно на 2550 % больше, чем в исходной стали до ее обработки (при применении рулонной стали и прессовки магнитопровода без шпилек).

Трансфор­мация напряжений и токов при переда­че энергии трансформатором сопровож­дается потерями энергии магнитными ∆рм: в магнитопроводе и электрическими ∆рэ1и ∆рэ2 — в обмотках трансформатора.

Амплитуда магнитного потока Фт в магнитопроводе трансформатора при постоянстве напряжения сети и частоты остается практиче­ски неизменной независимо от токов в обмотках. Поэтому магнитные потери также постоянны и равны мощности потерь холостого хода Рх при любых токах: ∆рхх

Электрические потери в обмотках пропорциональны квадрату тока; их можно выразить через паспортную мощность потерь короткого за­мыкания: Рк.ном = Rк·I21ном:

где β= I2/I2ном = I1/I1ном— коэффициент нагрузки.

Активная мощность приемников: Р2=U2 ·I2 ·cosφн=β·Sном·cosφн

Хотя работа трансформатора состоит в передаче полной мощности, егоКПД определяют по передаваемой активной мощности и потерям энергии: КПД= , где P2 – полезная мощность, - потери в трансформаторе.

, где Sн – полная номинальная мощность трансформатора, Kз- коэффициент загрузки, cosф- коэфф мощности.

Таким образом, к. п. д. трансформатора максимален при

Несмотря на очень высокий к. п. д. трат-форматоров вследствие их огромной установ­ленной мощности, общие потери энергии в трансформаторах довольно значительны. Поэтому важны все меры по сниже­нию потерь энергии (отключение при холостом ходе, уменьшение мощностей потерь Рх и Рк.ном).

Зависимость КПД от нагрузки. По (2.57) можно построить зависимость КПД от нагрузки (рис. 2.39, а). При β = 0 полезная мощность и КПД равны нулю. С увеличением отдаваемой мощности КПД увеличивается, так как в энергетическом балансе уменьшается удельное значение магнитных потерь в стали, имеющих постоянное значение. При некотором значении βопт кривая КПД достигает максимума, после чего начинает уменьшаться с увеличением нагрузки. Причиной этого является сильное увеличение электрических потерь в обмотках, возрастающих пропорционально квадрату тока, т. е. пропорционально β2, в то время как полезная мощность Р2возрастает только пропорционально β.

Максимальное значение КПД в трансформаторах большой мощности достигает весьма высоких пределов (0,98—0,99).

 


Дата добавления: 2015-10-21; просмотров: 67 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
 | красный/темно-красный/белый

mybiblioteka.su - 2015-2024 год. (0.008 сек.)