Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1.Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.



1.Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.

.Матрицей размера mxn наз-ся прямоуг.таблица чисел,сост.из n-строк и m-столбцов.Эл-ты м-цы – числа,составл.м-цу. М-цы обознач.прописными(загл.)б-ми лат.алфав.,напр.:А,В,С,..,а для обознач.эл-тов м-цы исп.строч.буквы с двойной индексацией:аij,где i-номер строки, j – номер ст-ца. М-ца наз-ся невырожденной (неособенной, если |A|≠0. При |А|=0 – вырожденная (особенная) м-ца.

Виды м-цы: м-ца(вектор)столбец – м-ца,сост.из одного столбца; м-ца(вектор)строка – м-ца,сост.из одной строки; квадр.м-ца n-го порядка – м-ца,ч-ло стр.которой=ч-лу ст-в и =n.; диагонал. – все недиагонал.эл-ты квадр.м-цы равны 0.; единич. (обознач.Е) – все диагонал.эл-ты диагонал.м-цы =1; нулевая – м-ца,любого размера, если все её эл-ты равны 0.

Трансп.м-цы – это смена местами строк и ст-в с сох-м порядка следования эл-тов. А – исходная, А’(Ат)-транспонир. Если А м-ца имеет размер mxn, то А’ м-ца – nxm.

Равенство м-ц:две м-цы одинак.размера наз.равными,если они равны поэлементно.

Сложение м-ц: (одинак.размера)Складываем соотв.эл-ты.

Умножение на число: все эл-ты м-цы умнож.на это число. (Общ.множитель всех эл-тов выносится за знак.м-цы).

Умножение 2-х м-ц: произведение м-цы Аmxn на м-цу Вnxp наз-ся м-ца Сmxp,каждый эл-т которой равен сумме произведений эл-в i-строки на соотв.эл. j – столбца. Перемножать можно только такие м-цы,когда число столбцов 1-ой м-цы равно числу строк 2-й м-цы. Произведение м-ц не коммуникативно. 2х3 3х7 не = 3х7 2х3,т.к. 7 не = 2.

Возвед.квадр.м-цы в степень. (только квадр.) Аm = А* А*..А. m раз.

 

5. Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы.

Линейная зависимость и независ.строк м-цы.Расм.прямоуг.м-цы Аmxn

l1=(a11,a12,a13,a14,..,a1n) – 1-я строка; l2=(a21,a22,a23,a24,..,a2n) – 2-я строка.

lm=(am,am2,am3,am4,..,amn) Линейной комбинацией строк м-цы наз-ся выраж. λ– «лямбда».

λ 1 * k1+ λ 2k2+… + λ m-1km -1+ λ mkm, где все λ -это числа.

Опред.:строки l1,l2,..,lm – линейно независимые,если их линейная комбинация равна нулевой строке,когда все числа λ =0 (λ 1=0, λ 2=0, λ 3=0,.. λ m=0). Если опред-ль А не=0, то строки линейно независимы.

Опр:строки l1,l2,l3,..lm-1,lm – лин.завис.,если их лин.комбинация = нулевой строке только, когда хотя бы одно из чисел λ 1, λ 2, λ m ≠0.

ТЕОР.о ранге м-цы. Ранг м-цы равен максимальному числу её лин.независ.строк или ст-в м-цы, через которые линейно выражаются все остальные её строки (ст-цы).



Пусть м-ца А размера mxn имеет ранг r(r≤min(m;n)). Это означает,что сущ-ет отличный от нуля минор r-го порядка. Всякий нулевой минор r-го порядка будет наз-ть базисным минором. Пусть для определённости это минор

|a11 a12... a1r|

|a21 a22... a2r|

∆= |... | ≠0.

|ar1 ar2... arr|

Тогда строки м-цы e1,e2,...,er линейно независимы. Предположим противное,т.е.одна из этих строк,напр. еr, явл-ся лин-й комбинацией остальных:

er1e12e2+...+λr-1er-1.

Вычтем из эл-тов r-й строки эл-ты 1-й строки,умноженные на λ1, эл-ты 2-й строки, умноженные на λ2, и т.д., наконец,эл-ты (r-1)-й строки,умнож-е на λr-1. При таких преобразованиях м-цы её опред-ль ∆ не изм-ся, но т.к. теперь r-я строка будет состоять из одних нулей, то ∆=0 – противоречие, и наше предполож.неверно.

 

10. 10. Решение систем п линейных уравнений с п переменными с помощью обратной матрицы (вывод формулы Х=А –1 В).

Рассм.с-ма лин.ур.,в кот.ч-ло ур-ний = ч-лу неизв-х. Тогда м-ца с-мы (сост.из коэф-в при неизв-х,когда в 1-м ст-це коэф-та Х1, во 2-м коэф-та Х2 и т.д.) квадратная.

Если м-ца с-мы невырожденная, то реш.с-мы ст-ц неизв-х

Х=А-1В, где В – ст-ц своб.чл-в.

Для получ.реш-я с-мы (ф.1) при m=n в общ.виде предположим, что квадр.м-ца с-мы Аnxn невырожд.,т.е. её опред-ль |A|не=0. В этом сл-е сущ-ет обр.м-ца А-1.

Умножая слева обе части матричного равенства (ф.5) на м-цу А-1,получим А-1(АХ)= А-1В. Т.к. А-1(АХ)=(А-1А)Х=ЕХ=Х, то реш-м с-мы методом обр.м-цы будет м-ца-столбец Х= А-1В.

Аmxn*Хnx1mx1 <=> (ф.1)

(a11x1+a12x2+…+ аnxn=b1

(a21x1+a21x2+… +a2nxn=b2

(….

mx12mx2+… +аmnхn=bm

11х1+ а12х2 +…+а1jxj+...+а1nxn=b1; (ф.5)

(а21х122х2+…+а2jxj+…+а2nxn=b2;

(...........

(аi1х1i2х2+…+aijxj+…+ainxn=bi;

(...........

(аm1х1m2х2+…+аmjxj +…+аmnxn=bm.

 

2. Определители 2, 3 и n -го порядков (определения и их свойства). Теорема Лапласа о разложении определителя по элементам строки или столбца.

Опред.1-го порядка (м-цы 1-го порядка) наз-ся эл-т этой м-цы а11. Е=(1),|E| = detE=1

A=(0),|A|=0.

Опред.2пор.наз-ся ч-ло,кот.считается след.образом |A|=a11*a22 – a12*a21.

Опред.3пор.наз-ся ч-ло,кот.наход.по ф-ле (когда вычёркивают по пересечению..)

Теор.Лапласа(о разлож.опред.) Опред.квадр.м-цы равен сумме произведений эл-тов какой-либо ст-ки или ст-ца на их алгебраич.дополнения.

^3 = a11*A11 + a12*A12 + a13*A13 (^3 = a11 *M11 – a12 *M12 + a13 *M13)

Замечание:Для ^-ной м-цы (то есть такой,в кот.под эл-ми гл.диагонали-нули)опред-ль равен произвед.диагонал.эл-тов(эл-тов гл.диаг.)

Св-ва опред-й: 1) При трансп.опред-ль м-цы не меняется.

2) Если в м-це есть нулевая строка или нулевой столбец,то опред-ль такой м-цы =0.

3) Если в м-це поменять местами 2 ст-ки или ст-ца с сохр-м порядка след.эл-тов,то опред-ль поменяет знак на противопол.

4) Если в м-це есть 2 одинак.строки или столбца,то опред-ль такой м-цы =0.

5) Общ.множ-ль эл-тов какой-либо ст-ки или ст-ца можно вынести за зн.опред-ля.

6) Если к эл-там какой-либо стр.или ст-ца прибавить эл-т др.ст-ки или ст-ца,умноженные на любое число,то опред-ль не изм.

 

7. Собственные векторы и собственные значения матрицы. Характеристическое уравнение матрицы.

Опр: В-р Х наз-ся собственным в-ром квадр.м-цы А, если он не нулевой и удовлетворяет ур-е Аnx1* Хnx1=Y* Xnx1,где Y -собств.зн-е квадр.м-цы А. коллинеарный в-р.

Число Y наз-ся собственным зн-ем оператора А~ (м-цы А),соответствующим в-ру Х.

Метод вычисления собств.зн-ий и собств.в-ров. Т.к. Хnx1nx1 * Хnx1, то АХ=YEX ~ AX-YEX=0 ~ (A-YE)X=0. Если ^ = |A-YE|=0,то т.к.все ^1=0, сист.ур-ий имеет бескон.много реш.в этом сл-е (0/0).

Ур-е |A-YE|=0 – характеристическое ур-е м-цы. Из него находим Y и далее по ур-нию (A-YE)X=0 находим соотв.ненул.в-р Х.

Св-ва собств.зн-ний м-цы А: 1) Произвед-е собств-х зн-ний м-цы А равно её определителю |А|=Y1,Y2,...,Yn.

2) Число отличных от нуля собств.зн-ний м-цы А = её рангу.

3) Все собств.зн-я м-цы отличны от 0 тогда и только тогда,когда м-ца А невырожд.

4) Если Yне=0 – собств.зн-е невырожд.м-цы А,то Y-1=1/Y – собств.зн-е обрат.м-цы А-1. 5) Если Y – собств.зн-е м-цы А,то Ym -собств.зн-е м-цы Аm, где m – натур.ч-ло.

 

9. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.

Метод Гаусса – метод послед-го исключ.переменных.

Сначала(на 1-м шаге прямого хода Гаусса) из всех ур-ний,кроме 1-го исключается переменная х1. Потом (на 2 шаге) из всех ур-й,кроме первых 2-х исключается переменная х2 и т.д.,пока последнее ур-е не приобретёт вид: С * Хn=bm, если ч-ло С=0, а bm не=0,то с-ма не совместная,т.е.нет решений. Если С=0 и bm=0,т.е. 0*Хn=0,то с-ма неопределённая,т.е. имеет бескон.мн.реш.,то с-ма совместно-определённая. В этом сл-е Хn=bn/C

Полученное зн-е Хn подстав.в предпосл.ур-е,находим Хn-1 и тд.,пока не получ.все неизв-е.

Обратный ход Гаусса. Из м-цы ступенч.вида записывается ур-е. Далее,начиная с конца находим все переменные. Допустим Х4. Подставляем в верхнее и нах-м Х3 и т.д.

Метод Гаусса — Жордана исп-ся для реш.квадр.систем лин.ур-ний, нахождения обрат.м-цы, отыскания ранга м-цы. Метод явл-ся модификацией метода Гаусса. Назван в честь Гаусса и Жордана.

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B) - с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз. определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист .не определённая.

 

3. Квадратная матрица и ее определитель. Особенная и неособенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления.

Определители квадр.м-ц:

Опред.1-го порядка (м-цы 1-го порядка) наз-ся эл-т этой м-цы а11. Е=(1),|E| = detE=1

A=(0),|A|=0.

Опред.2пор.наз-ся ч-ло,кот.считается след.образом |A|=a11*a22 – a12*a21.

Опред.3пор.наз-ся ч-ло,кот.наход.по ф-ле (когда вычёркивают по пересечению..)

Св-ва опред-й: 1) При трансп.опред-ль м-цы не меняется.

2) Если в м-це есть нулевая строка или нулевой столбец,то опред-ль такой м-цы =0.

3) Если в м-це поменять местами 2 ст-ки или ст-ца с сохр-м порядка след.эл-тов,то опред-ль поменяет знак на противопол.

4) Если в м-це есть 2 одинак.строки или столбца,то опред-ль такой м-цы =0.

5) Общ.множ-ль эл-тов какой-либо ст-ки или ст-ца можно вынести за зн.опред-ля.

6) Если к эл-там какой-либо стр.или ст-ца прибавить эл-т др.ст-ки или ст-ца,умноженные на любое число,то опред-ль не изм.

Опред.квадр.м-цы равен сумме произведений эл-тов какой-либо ст-ки или ст-ца на их алгебраич.дополнения.

^3 = a11*A11 + a12*A12 + a13*A13 (^3 = a11 *M11 – a12 *M12 + a13 *M13)

М-ца наз-ся невырожденной (неособенной, если |A|не=0. При |А|=0 – вырожденная (особенная) м-ца.

Присоедин.м-ца. А~ присоединённая для м-цы А,если она сост.из алгебраич.дополнений к эл-там транспонир.м-цы. Замеч.:чтобы быстро найти присоедин.м-цу для квадр.м-цы 2-го порядка надо поменять местами эл-ты на гл.диагонали, а перед другими двумя Эл-ми поменять знак на противоп.

Обратная м-ца. А-1 наз-ся обратной для м-цы А, если произведение этих м-ц в любом порядке есть Единичное. А*А-1-1*А=Е Замечание:если опред-ль м-цы А не равен 0,то такая м-ца наз-ся невырожденной (неособенной).

ТЕОР.для того, чтобы квадр.м-ца А имела обратную,необх.и достат., чтобы она была невырожденной. А-1 нах-ся о формуле: А-1=1/|А| * А~ (сначала находим опред-ль (|A|), затем присоед.м-цу (А~), потом по ф-ле находим обр.м-цу А-1)

 

8. Система п линейных уравнений с п переменными (общий вид). Матричная форма записи такой системы. Решение системы (определение). Совместные и несовместные, определенные и неопределенные системы линейных уравнений.

8. Система лин.ур-ний:

Аmxn*Хnx1mx1 <=> (ф.1)

(a11x1+a12x2+…+ аnxn=b1

(a21x1+a21x2+… +a2nxn=b2

(….

mx12mx2+… +аmnхn=bm

В матричной форме система имеет вид АХ=В, где

11 a12... a1n)

A= (a21 a22... a2n)

ф.2(............);

(am1 am2.. amn)

(x1)

X= (x2)

ф.3 (....);

(xn)

(b1)

B= (b2)

ф.4(....);

(bm)

называются собственно матрицей системы, матрицами-столбцами переменных и свободных членов.

Решение системы:а) методом обр.м-цы. Ур-е в матричной ф-ме имеет вид АХ+В. Найти обр.м-цу. И найдём Х по ф-ле Х=А-1В,( т.е.х123.)

б) По ф-ле Крамера. Найти определитель системы ^=|A|. Если он не=0,то сист.имеет единств.реш. Далее вычислить опред-ли м-ц ^ 1, ^ 2, ^ 3,полученных их м-цы А,заменой соотв-но 1-го,2-го и 3-го ст-цов столбцом своб.членов. Далее по ф-лам Крамера:х1= ^ 1/ ^, х2= ^ 2/ ^, х3= ^ 3/ ^.

Расширенной м-цей системы наз.м-ца (А|В),полученная из м-цы сист.А добавлением к ней ст-ца членов этой системы,т.е. (А|В)=(ф.2|ф.4)

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B) - с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз. определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист .не определённая.

 

4. Понятие минора k- го порядка. Ранг матрицы (определение). Вычисление ранга матрицы с помощью элементарных преобразований. Пример.

Минором Mij эл-та aij квадр.м-цы A n-ого порядка наз-ся опред-ль квадр.подм-цы n-1-го порядка, полученной из исходной вычёкиванием i-строки и j-ст-ца.

Если в м-це А размера mxn выделить какие-либо k ст-к и k ст-в (k ≤ min (m,n)),то опред-ль подм-цы из получаемых на пересечении этих строк и ст-в эл-в наз-ся минором k-го порядка м-цы А.

Ранг м-цы - это наивысший порядок минора м-цы отличный от нуля. (Минор м-цы – то опред-ль квадр.подм-цы). r(А) = n

Ранг м-цы равен максимал.числу лин.независ.ст-к или ст-в м-цы.

Эл.преобраз.:1)отбрас.нулевой строки или ст-ца. 2)Трансп.м-цы, 3)Сложение(или вычит.)эл-тов какой-либо строки или ст-ца с соотв.эл-ми др.стр.(ст.), умноженными на какое-то(любое)число., 4)Смена местами стр-к или ст-в м-цы с сохран.порядка след.эл-тов в них.

ТЕОР.Ранг м-цы не меняется при эл.преобраз.

Опр:М-ца наз-ся ступенчатой,если под эл-ми гл.диагонали такой м-цы только нул.эл-ты или эл-тов вообще нет. Замечание:Элементарн.преобразованиями любая м-ца приводится к ступенчатой. В такой ступенчатой матрице ранг это число строк в ней. Это число совп.с рангом исх.м-цы,т.к.при элементар.преобр.ранг не меняется.

 

*2 (2 -4 1 5 3)<\

| (0 -1 3 0 2) |

+ (-4 5 7 -10 0) | ~

(-2 1 8 -5 3)</

 

(2 -4 1 5 3) (2 -4 1 5 3)

(0 -1 3 0 2)*3 (0 -1 3 0 2)

~ (0 -3 9 0 6) - ~ (0 0 0 0 0)

(0 -3 9 0 6) - (0 0 0 0 0)

 

(2 -4 1 5 3)

(0 -1 3 0 2)

~ (0 0 0 0 0) > r(A)=2,т.к.

(0 0 0 0 0) 2 строки в ступенч.м-це.

 

11. Теорема и формулы Крамера решения системы п линейных уравнений с п переменными (без вывода).

.Ф-лы Крамера решения с-м из n ур-ний с n неизв.

Рассм.сист.из n ур-й с n незв.,которая в матричном виде м.б. записана АnxnХnx1nx1.

Обозначим опред-ль м-цы системы |А|=^. Если (опред-ль м-цы) ^не=0,то сист.имеет ед.реш. хi=^i/^, i=1...n, где ^1,^2, ^3,...^n побочные опред-ли. Когда находят ^1,то в м-це системы 1-ый ст-ц заменяет ст-ц своб.чл. Для определению ^2 в м-це сист.2-ой ст.заменяют ст.св.чл-в.

Для вычисл.^3 в м-це с-мы 3-й ст.заменяют ст.св.чл-в. Затем находят х123 по ф-ле хi=^i/^.

Замечание: (Из метода гаусса 0*Хn=0,то бескон.мн.реш. Формально Хn=0/0 – неопред.)

Если ^=0 и все ^i=0 (i=1,...n),то сист.имеет бескон.мн.реш(кот.устан.мет.Гауса). Если ^=0 и хотя бы один из ^i не=0 (5/0-нельзя),то с-ма не совместна,т.е.не имеет реш.

ТЕОРЕМА КРАМЕРА. Пусть ^ - опред-ль м-цы с-мы А, а ^j – опред-ль м-цы, получаемый из м-цы А заменой j-го ст-ца ст-цом св.чл-в. Тогда,если ^не=0,то с-ма имеет единств.реш.,определяемое по ф-лам: Хj=^j/^ (j=1,2,...,n). Ф-лы получ.назв.ф-мул Крамера.

Обр.м-ца А-1=1/|A| *A~, где А~ - м-ца,присоед.к м-це А.Т.к. эл-ты м-цы А~ есть алгебраич.доп-я эл-в м-цы А’,трансп-й к А, то

1) (А11 А12 … Аn1) (b1)

(х2) (А12 А22 … Аn2) (b2)

(…) = 1/|А| (…) (…)

n) (А1n А2n …Аnn) (bn)

 

Учитывая, что |А|=^,получим после умнож.м-ц

 

1) (b1А11+ b2А12+ … + bnАn1)

2) (b1А12+ b2А22+ … + bnАn2)

(…) = 1/^ (…)

n) (b1А1n+ b2А2n+ … + bnАnn)

откуда следует, что для любого j(j=1,2,…,n) Хj=1/^ (b1A1j + b2A2j +.. + bnAnj).

b1А1j + b2А2j +.. + bnАnj = ^j, где ^j- опред-ль м-цы,получ.из м-цы А заменой j-го ст-ца (j = 1,2,..,n) ст-м св.чл-в. След-но, Хj=^j/^. чтд

 

21. Производная и ее геометрический смысл. Уравнение касательной к плоской кривой в заданной точке.

Опр: Производной ф-ции у=f(x) наз-ся предел отнош.приращ.ф-ции к приращ.аргумента, при усл-ии, что приращ.арг. мало, а предел сущ-ет и конечен. y’=limx→0∆y/∆x.

АВ – секущая гр.ф-ции y=f(x)

α=ВАС.

Kсек=tgα=tgВАС=ВС/АС=∆у/∆х

Если ∆х→0, то т.В→с т.А.

Секущая АВ→в своё предельное положение, называемой касательной АВ. Значит Kкас= limx→0∆y/∆x.

Т.о. Геом.смысл производной заключ.в том, что производная в т.касания равна угл.коэф-ту касательной, т.е. f’(x)=Kкас.

Ур-е касат-й: y-y0=f’(x0)(x-x0).

y0=f(x0)

 

6. Векторы. Операции над векторами (сложение, вычитание, умножение на число), n -мерный вектор. Понятие о векторном пространстве и его базисе.

Геом.вектор. Вектор АВ-> – направленный отрезок прямой (АВ) с нач.в т.А и концом в т.В. При умнож.вектора на число «У» получается коллинеарный в-р.

Длина в-ров |АВ|= кв.корень х22

В-ры,лежащие на одной прямой наз-ся коллинеарными. В-ры,лежащие в одной плоскости или ||-ных плоскостях наз-ся компланарными. Если нач.и конец вектора совп.,то в-р наз-ют нулевым. Длина нул.вект.=0.

Вектором,противоп-м в-ру а->, наз-сяпроизвед.в-ра а->на ч-ло (-1),т.е. - а-> =(-1) а->.

Координатами в-ра а-> наз-ся корд-ты его конечной точки. На плоскости Oxy два ч-ла - (х;у), в пространстве Oxyz три ч-ла - (х;у;z).

В-р а-> = (x;y;z) мож.б.записан в виде а-> = хi-> +yj->+zk->. i->,j->,k-> – единичные в-ры(орты),совпадающие с направл.соотв.осей Ох,Оу,Оz. хi->,уj->,zk-> - компоненты в-ра.

Операции над в-ми:

1) Суммой двух в-ров а->иb->наз-ся в-р с->->+ b->,нач.кот.совп-т с нач.в-ра а->, а конец – с концом в-ра b->при усл.,что нач.в-ра b-> совп.с концом в-ра а->.

Правило треугольника. Для слож.2-х в-ров а->и b-> по правилу треуг-ка оба эти в-ра переносятся ||-но самим себе так,чтобы нач.одного из них совп.с концом другого. Тогда в-р суммы задаётся 3-ей стороной образовавшегося треуг-ка, причём его нач.совп.с нач.первого в-ра.

2) умнож.в-ра на ч-ло:при умнож.в-ра на ч-ло Y пол-ся коллинеарный в-р. (Произвед.в-ра а-> на ч-ло У наз-ся в-р b->=Уа->, имеющий длину |b->|=|У||а->|, направление кот.совп.с направл.в-ра а->, если У<0.) Если b->= а->Y,то а->|| b->. И наоб.,если а->|| b->( а->не=0),то b->= а->Y.

3) Разностью 2-х в-ров а->и b-> наз-ся сумма в-ра а-> и в-ра -b->, противоположного b->.

||Скалярным произведением 2-х в-ров наз-ся ч-ло,равное произведению длин этих в-ров на косинус угла между ними: а-> * b-> *cosф, где ф-угол между в-рами а-> и b->. В-ры явл-ся ||-ми тогда и только тогда, когда их скал.произвед.=0.

|| n-мерным в-ром наз-ся упорядоченная совокуп.n действительных чисел,записываемых в виде х=(х12,..,хn),где числа х123,..хn компоненты в-ра.

Равенство в-ров. Векторы х и y равны тогда и только тогда, когда равны их соотв.компоненты,т.е. х=у,если хij, i=1,2,…,n.

Суммой 2-х в-ров одинак.размерности n наз-ся в-р z=x+y,компоненты кот.равны сумме соотв.компонент слагаемых в-ров,т.е.zi=xi+yi,i=1,2,...,n.

Произв-м в-ра на действит.ч-ло Y наз-ся в-р u=Yx,комп-ты кот.равны произв-ю Y на соотв.комп-ты в-ра х,т.е. ui = Yxi, i=1,2,...,n.

Линейные оп-ции над люб.в-рами удовлет.след.св-вам: 1) х+у=у+х – коммутативное, 2) (х+у)+z=х+(у+z) – ассоциативное(сочетательное), 3) альфа(бета*х)=(альфа*бета)х, 4) альфа(х+у)=альфа*х+альфа*у, 5) (альфа*бета)х=альфа*х+бета*х, 6) сущ-т нул.в-р 0=(0,0,…,0)такой,что х+0=х для люб.в-ра х., 7) для люб.в-ра сущ-т противоп.в-р (-х) такой,что х+(-х)=0., 8) 1*х=х для люб.в-ра х.

Опр.: ВЕКТОРНОЕ ПР-ВО:множество в-ров с действит.компонентами,в котором определены операции сложения в-ров и умнож.в-ра на ч-ло,удовлетворяющее приведённым выше 8-ми св-вам.

n-векторное пространство – это множество всех n-мерных векторов.

Вектор а m наз-ся линейной комб-ей в-ров а12,..,аm в-рного простр-ва R ,если он равен сумме произв-ний этих в-ров на произвол.действит.ч-ла: am= Y1a1+ Y2a2+...+Ym-1am-1, где Y1,Y2,...,Ym-1 – какие угодно действит.ч-ла.

Опр.: В-ры а12,…,аm в-рного простр-ва R наз-ся лин.завис.,если сущ-ют такие ч-ла Y1,Y2,...,Ym,не равные одновременно нулю, что Y1a1+Y2a2+...+ Ymam=0. В противном случае в-ры наз-ют лин.независ.

Лин.простр-во наз.n-мерным,если в нём сущ-ет n линейно независ.в-ров,а любые из (n+1) в-ров уже явл-ся завис. Размерность пр-ва – это максимально ч-ло содержащихся в нём линейно независ.в-ров. Ч-ло n наз-ся размерностью пр-ва R. Совокупность n линейно независ.в-ров n-мерного пр-ва таких,что любой в-р прост-ва может быть единственным образом представлен в виде их лин.комбинации наз-ся БАЗИСОМ.

Если е1, е2,…, е n – система лин.независ.в-ров пр-ва R и любой в-р а лин.выражается через е1, е2,…, е n, то пр-во R явл-ся n-мерным,а в-ры е1, е2,…, е n – его базисом.

 

 

 

 

 


Дата добавления: 2015-09-30; просмотров: 57 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Понятие автоматизированных систем и их классификация. | Жанр: Эротика, Любовно-фантастические романы,Слеш

mybiblioteka.su - 2015-2024 год. (0.049 сек.)